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ABSTRACT
In this work, we investigate pre-training of neural network based
speaker embeddings for low-latency speaker change detection. Our
proposed system takes two speech segments, generates embeddings
using shared Siamese layers and then classifies the concatenated em-
beddings depending on whether they are spoken by the same speaker.
We investigate gender classification, contrastive loss and triplet loss
based pre-training of the embedding layers and also joint training of
the embedding layers along with a same/different classifier. Training
is performed on 2-second single speaker segments based on ground
truth speaker segmentation of broadcast news data. However, dur-
ing test, we use the detection system in a practical low-latency set-
ting for annotating automatic closed captions. In contrast to train-
ing, test pairs are now created around automatic speech recognition
(ASR) based segmentation boundaries. The ASR segments are of-
ten shorter than 2 seconds causing duration mismatch during testing.
In our experiments, although the baseline i-vector based classifier
performs well, the proposed triplet loss based pre-training followed
by joint training provides 7-50% relative F-measure improvement in
matched and mismatched conditions. In addition, the degradation in
performance is less severe for network based embeddings as com-
pared to using i-vectors in the variable duration test conditions.

Index Terms— Speaker change detection, sequence embed-
ding, Siamese networks

1. INTRODUCTION

Speaker change detection is the task of finding the time instances
in audio recordings when a different speaker starts to speak. One
general approach to this problem is to use a distance-based method.
These methods extract features using sliding windows, compare fea-
ture representations of consecutive windows using a distance mea-
sure and then threshold the distance [1]. On the other hand, model-
based approaches fit a model to the features of individual segments
and their concatenation, and choose the hypothesis with a higher
score; this score can be the Bayesian information criterion (BIC) [2]
or Gaussian likelihood score [3].

Among the most commonly used features to represent speaker
characteristics of a speech segment are i-vectors [4]. Although i-
vectors have been successfully used in speaker verification applica-
tions, reliability of these vectors depend on segment duration [5, 6].
In order to solve this problem, short speech segments are often clus-
tered using BIC, Gaussian divergence [7] or x-means [8, 9] prior
to computing the i-vector. However, these clustering methods are
mainly designed for offline processing and cannot be used in low-
latency applications [8].

Recently, neural network based speaker embeddings have been
used as an alternative [10, 11] or as complementary features [12]

to i-vectors. Studies have shown that network based embeddings
can achieve better performance than using BIC based approaches on
mel-frequency cepstral coefficients (MFCCs) [10, 11] or filterbank
coefficients [13]. In [12], network embeddings are used in a speaker
classification task with a probabilistic linear discriminant analysis
backend and have been shown to achieve better performance than i-
vectors especially when the inputs are short (10s). These embedding
networks are trained using multiclass cross-entropy for speaker clas-
sification using a large number of speakers [12, 13], using contrastive
loss on two inputs processed in a Siamese architecture [14] or using
triplet loss [10]. In order to map variable length sequences to fixed
dimensional embeddings, long short-term memory (LSTM) [15] lay-
ers are usually employed.

In addition to generating embeddings, neural networks have also
been used in end-to-end speaker change detection systems [16, 17,
18, 11] where the change decision is made at the end of a network in-
stead of thresholding a distance measure. These systems can be clas-
sified into cases where the problem is reduced to taking two speech
segments as input and comparing them [16, 11] or deciding if there
is a change point within a given single speech segment [17, 18]. The
networks that compare two segments usually have a Siamese struc-
ture where the initial few layers processing the two inputs share their
weights. A similar structure is also usually used in embedding gen-
erating networks where the training objective consists of comparing
the features extracted from the shared Siamese layers.

In this work, we combine learning speaker embeddings with
an end-to-end approach for speaker change detection. We feed the
Siamese embeddings of two segments into a fully-connected classi-
fier for speaker change detection and use embedding learning as a
pre-training method for these Siamese layers. We investigate three
pre-training mechanisms - gender classification, contrastive loss and
triplet loss with both cosine and Euclidean distance measures. Af-
ter pre-training, we either freeze the embedding layers and train the
classifier alone or we jointly update them. In order to handle vari-
able length segments, we use bidirectional LSTM (BLSTM) layers
in the Siamese part. In earlier studies, similar loss functions have
been used for embedding generation and then distance based change
detection is applied [10, 13] or the change detection is performed by
a network without explicitly training the intermediate speaker em-
beddings [11]. In this paper, we propose to use pre-training to get
better intermediate features for an end-to-end speaker change detec-
tion system.

Our second objective is to operate in the low-latency regime
which limits our input segment duration; we choose 2s as the max-
imum segment duration as we consider 2s to be an acceptable la-
tency for consumer applications. As observed in [8], large improve-
ments in the speed of speaker diarization can be obtained if auto-
matic speech recognition (ASR) based decision boundaries are used.
Based on this observation, our test setup considers comparisons only
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Fig. 1. Overview of the change detection network

around segment boundaries. During training, since manually anno-
tated speaker boundaries are available, our training segments are
extracted based on those boundaries. During testing, we use (a)
matched condition to the training setup where the decisions are made
around ground truth segments, (b) mismatched condition where the
decision boundaries around which we take our two inputs are based
on ASR segments. Especially this latter test condition introduces
an additional mismatch with shorter segment durations. Using this
setting for change detection also allows us to annotate speech recog-
nition outputs with speaker change detections for richer closed cap-
tioning in real time.

In [10], although the triplet loss training can handle variable du-
rations, the authors do not report the effect of duration mismatch
between training and test segments and their change detection is
based on distance thresholding. The end-to-end approach of [11]
has a similar architecture to our network except that the authors take
the absolute difference after Siamese layers rather than concatenat-
ing them, they do not employ pre-training, and their tests include
only fixed-length segment comparison on synthetically concatenated
speech segments. Both of these studies use a sliding window ap-
proach; conversely, as discussed above, we use ASR based segment
boundaries in our tests for low-latency applications. In effect, one
of our contributions is the application of ASR boundaries, proposed
in [3], to a low-latency end-to-end neural speaker change detector.
In summary, our main contributions are (1) incorporating existing
speaker embedding learning methods into an end-to-end system as
pre-training, (2) comparison of speaker change detection based on i-
vectors and neural network embeddings under mismatched test seg-
ment duration and (3) evaluation of change points based on ASR
segment boundaries for low-latency applications.

The rest of the paper is organized as follows: In Section 2 we
introduce our change detection system and describe the pre-training
of the Siamese layers in the network. In Section 3, we present exper-
imental setups and results, then we conclude the paper in Section 4.

2. SPEAKER CHANGE DETECTION

Figure 1 gives an overview of the speaker change detection net-
work. Two speech segments are first passed through shared Siamese
layers to generate their corresponding embeddings. The embed-
dings are then concatenated and fed into the classifier which is a
fully-connected network. Therefore, in our end-to-end approach,
same/different classification decisions are obtained at the output of
a network rather than thresholding the distance between the embed-
dings. After training, speaker change times are determined by eval-
uating the network around segment boundaries and outputting the

beginning time of the right segment.
The Siamese network consists of three BLSTM layers followed

by two fully connected tanh layers. Transition from the BLSTM to
the fully connected layers is achieved by concatenating the forward
and backward average activations over time from the last BLSTM
layer. Thus, we can map variable length sequences into fixed dimen-
sional embeddings. These embedding layers are pretrained either for
gender classification or using contrastive divergence loss or triplet
loss. After pretraining, we either freeze the Siamese layers and learn
a same/different classifier on the embeddings or update the parame-
ters of the Siamese network along with the classifier to achieve better
classification accuracy.

2.1. Pre-training with Gender Classification

In the first approach, we train a gender classification network using
binary cross-entropy objective. This pretraining can be considered
as a simplified version of using multi-class speaker classification to
generate the embeddings. To get the gender probability y(m) for the
m-th sample, we pass the embeddings through an affine layer fol-
lowed by sigmoid nonlinearity. If the gender label is represented as
with binary labels g, we can write the binary cross-entropy objective
Lx as

Lx =

M∑
m=1

g(m) log(y(m)) + (1− g(m)) log(1− y(m)) (1)

2.2. Pre-training with Contrastive Loss

In the second approach, we use a pair of inputs and use contrastive
loss as our objective. In this setup, we try to minimize the distance
between the embeddings of two inputs if they are uttered by the same
speaker and we try to maximize the distance otherwise. Let sl and
sr denote the speakers of the left and right segments, respectively.
Also let δ to be the indicator function and ∆c be a margin parameter.
For a set of M training segments, the contrastive divergence loss Lc

that we want to minimize is

Lc =

M∑
m=1

δ[s
(m)
l = s(m)

r ]d(x
(m)
l , x(m)

r )

+ δ[s
(m)
l 6= s(m)

r ] max(0,∆c − d(x
(m)
l , x(m)

r )) (2)

where d(., .) is a distance measure such as Euclidean or cosine dis-
tance and xl and xr are the embeddings obtained from the network.

2.3. Pre-training with Triplet Loss

In the third approach, we use triplets and we try to minimize the
triplet loss. In this setup, we have an anchor segment, a positive seg-
ment uttered by the same speaker as the anchor and a negative seg-
ment uttered by a different speaker. The aim is to find embeddings
such that for a given triplet, the anchor and the negative sample are
separated more than the anchor and positive sample with a margin
∆tri. If we denote the embeddings for the anchor, positive and neg-
ative samples using xa, xp and xn, respectively, then the triplet loss
Ltri that we want to minimize is written as

Ltri =
M∑

m=1

max(0,∆tri + d(x(m)
a , x(m)

p )− d(x(m)
a , x(m)

n )) (3)

As in (2), d(., .) denotes the distance measure.
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3. EXPERIMENTS
3.1. Dataset

For our speaker change detection experiments we use 144 hours of
audio from the Hub4 acoustic training data set collected between
May 1996 and January 1997 [19, 20]. This data set (BN-144) which
covers 288 TV shows is manually transcribed and annotated with
speaker information.

In the experiments, we trained embeddings networks using a
fixed set of pairs or triplets of inputs and did not resample the lists.
All training segments are 2s and are extracted from speech segments
greater than 2s in length after silence removal around manually la-
beled change points. To get our pairs, from each speaker we sample
ns segments; for each segment, we sample np positive samples, we
sample np speakers from the remaining speaker set and sample one
segment from each of them to get the negative pairs. The dataset
has more segments spoken by male speakers therefore the resulting
pairs mainly have male-male comparisons. To achieve a balance, we
subsampled the initial list of pairs to get equal number of same gen-
der and different gender comparisons and at the end we have 500000
pairs. For triplets, we followed an approach similar to [10] where we
picked n random samples from each of S speakers, for each speaker
we generated all possible pairs from those n segments, which gave
the anchor-positive pairs, and then for each pair we randomly chose
a single negative segment from the remaining (S − 1)n segments.
This resulted in 329000 triplets.

3.2. Training setups

Our 100 dimensional i-vectors [4] are extracted after using the maxi-
mum likelihood criterion to train a 2048 component, 40-dimensional
diagonal covariance based UBM followed by i-vector extraction ma-
trices. To train these systems, vectors of 9 consecutive PLP fea-
tures are spliced together and projected down to 40 dimensions us-
ing LDA. The i-vector extraction systems are trained on the BN-144
dataset described above.

The embedding network consists of three BLSTM layers fol-
lowed by two fully connected tanh layers. Transition from the
BLSTM to the fully connected layers is achieved by concatenating
the forward and backward average activations over time from the
last BLSTM layer. In contrastive loss and triplet loss training with
Euclidean distance, we also added an L2-normalization layer after
the second fully connected layer so that the norms of the embed-
dings and therefore the distance between the embeddings become
bounded. Inputs of the Siamese layers are 19-dimensional PLP
features, appended with their deltas and delta-deltas.

Same/different classifier network is a 3-layer fully connected
network with rectified linear unit nonlinearity. Its input is the con-
catenation of either PLPs, i-vectors or the Siamese embeddings of
the left and right segments. Since our embeddings are 32 dimen-
sional, the input of the classifier is 64 dimensional. The layers of
the classifier have 64 units. Final layer has a single output node with
sigmoid nonlinearity.

3.3. Test setups

Ten audio files are taken as test data which are not used in training.
However, 117 out of 174 test speakers also have data in the training
set. Audio pairs used in testing are determined based on speech seg-
ment boundaries. These boundaries are determined from either the
segments obtained from an ASR system or the segments based on the
ground truth speaker labeling with inter-speaker silences removed.
The ASR segments are produced by the IBM Cloud Speech-To-Text
(STT) service [21]. Although we trained our networks using 2s clips
determined from long enough ground truth segments with silences

Spk X Spk A Spk B

0 1.5 1.8 3.0 3.4 5.8

2s 2s

1.2s 2s

Fixed length 

Variable length

Fig. 2. Extraction of test segments around boundaries for fixed and
variable length cases

Table 1. Validation data same/different classification accuracy (%)
depending on the pre-training method, distance measure used in the
objective and whether embedding layers are frozen. S: Siamese, C:
classifier

Feat. Net. Pre-training Distance
Freeze
Embed.

Accu.

PLP C - - - 52.2
i-vector C - - - 86.6
PLP S+C Gender - Yes 76.9
PLP S+C Gender - No 78.1
PLP S+C Contrastive Cosine Yes 76.7
PLP S+C Contrastive Cosine No 87.3
PLP S+C Contrastive Euclidean Yes 77.4
PLP S+C Contrastive Euclidean No 87.5
PLP S+C Triplet Cosine Yes 84.6
PLP S+C Triplet Cosine No 87.9
PLP S+C Triplet Euclidean Yes 82.7
PLP S+C Triplet Euclidean No 89.0

removed, during test time we do not always have segments that are
at least 2s. Therefore, as shown in Figure 2, for each segment type
we performed two types of tests. In the first case, we still used fixed
length (2s) data. For each boundary, we took 2s of data before and
after the boundary, regardless of whether or not we have multiple
speakers within that 2s. In the second case, we took variable length
clips depending on the lengths of the segments. If they are shorter
than 2s, we took the whole segment, otherwise we took 2s of data
from the beginning (end) of the segment after (before) the bound-
ary. To limit latency, we did not use longer segments. Note that
especially in the variable length segment case, there is a significant
amount of mismatch between training and testing because we do not
have 2s clips as input and also the left and right clip possibly have
different durations. For the variable length case, average segment
duration for the ASR based test segments is 1.49s whereas for the
ground truth based test segments it is 1.54s.

3.4. Results

Table 1 shows the same/different classification accuracy on the vali-
dation data. The first two rows show the performance of the classifier
(C) when its input is concatenated PLP features or i-vectors of the
two segments. The rest of the table summarizes the performance
of Siamese layers followed by a classifier (S+C). In these rows, we
use pre-training with different objectives, which are binary cross en-
tropy for gender classification, contrastive or triplet loss. The dis-
tance measure used in the objective is cosine or Euclidean, and the
embedding layers are frozen or updated during classifier training.
As shown in the table, fine-tuning the embedding layers during clas-
sifier training improves the accuracy in all cases. If we freeze the
Siamese embedding layers after pre-training, that is, use the Siamese
network as a fixed feature extractor, we see that using the triplet loss
as the objective leads to better accuracy. This implies that the triplet
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Fig. 3. Precision-recall curves for i-vector and Siamese network
based change detection depending on the type of the test segments

loss leads to more dicriminative features as compared to contrastive
loss or gender classification. If we check the mean and variance of
the Euclidean distance, we also observed that after training with the
triplet loss, the average distance between different-pairs get much
higher than that of the similar-pairs and the variances of the distances
decrease for both same- and different-pairs.

Although the single sigmoid layer at the end of the classifier im-
plies a default threshold of 0.5 for change decision, we can threshold
the output to make change decisions when the network output has a
higher value, i.e., more confident about a change. By varying this
threshold, we obtained the precision-recall curves for the test data
which are shown in Figures 3(a)-(d). They show the results obtained
for ASR boundary based variable length and 2s segments, and also
for ground truth boundary based variable length and 2s segments.
In each figure, we include the curves for i-vector classification (i-
vector) and Siamese network setups pre-trained with triplet loss (Tri)
depending on the distance measure, which is cosine (Cos) or Eu-
clidean (Eucl) distance, and depending on whether we freeze (F) or
jointly train (T) the embedding layers.

In all four figures, Euclidean distance based triplet loss pre-
training followed by fine tuning during classifier training achieves
the best performance. Joint training of the Siamese layers with the
classifier achieves better performance than freezing them irrespec-
tive of the distance measure and the segment type. In the tests with
variable length segments (Figures 3a and 3c), frozen embeddings
perform as well as i-vectors, jointly trained embeddings perform bet-
ter. For 2s segments (Figures 3b and 3d), differences among systems
are smaller, but jointly trained embeddings are still the best.

For the default threshold of 0.5 imposed by the sigmoid output,
we report the F-measures for four types of test segments depend-
ing on the classifier model in Table 2. In each column, the best
F-measure is highlighted. As seen from the table, joint training of
embedding layers with the classifier after Euclidean distance based
triplet loss pre-training achieves the best performance for all seg-
ment types. For threshold 0.5, performance of the frozen embed-

Table 2. F-measures on the test data for threshold 0.5 depending on
the model and the segments used for testing

ASR boundary Ground truth boundary
Variable 2-second Variable 2-second

i-vector 0.3150 0.4902 0.5036 0.6109
Tri-Cos-F 0.3626 0.4752 0.5130 0.5820
Tri-Cos-T 0.4354 0.5014 0.5821 0.5999
Tri-Eucl-F 0.3332 0.4591 0.4722 0.5736
Tri-Eucl-T 0.4746 0.5323 0.6141 0.6511

ding layers is slightly worse than i-vectors in tests with 2s segments.
However, the reduction in performance is less severe for Siamese
network based architectures compared to the i-vector based setup
when the test segments have variable duration rather than fixed 2s
duration. This results from the fact that i-vector estimation becomes
harder for shorter segments whereas the BLSTM based Siamese em-
beddings are more robust against changes in input duration. The
relative improvements in F-measures as compared to i-vectors are
50.7% in the highly mismatched condition (Variable length-ASR),
and 6.6% in the matched condition (2s-Ground truth).

Table 2 reports the results without any threshold tuning at 0.5. If
the threshold were to be tuned, we observed that having a threshold
around 0.7 achieves a better F-measure in all cases. The conclusions
from Table 2 are still applicable for this new threshold.

We also combined the i-vector and embedding based systems by
averaging their sigmoid outputs. In the variable length case, low per-
formance of i-vector deteriorates the F-measure in the combined sys-
tem as compared to the Siamese network. However, in the 2s condi-
tions, where i-vectors perform reasonably well, the combined system
achieves better F-measure than the individual systems, showing the
complementary nature of the two systems. The combined i-vector
and Tri-Eucl-T system has an F-measure of 0.5599 and 0.6783 for
2s ASR based and ground truth based test segments, respectively,
for a threshold of 0.5. These are around 5% relatively higher than
Tri-Eucl-T on 2s segments.

4. CONCLUSIONS

In this work, we presented an end-to-end speaker change detection
setup that consists of Siamese layers for speaker embedding gen-
eration and a classifier that makes same/different decisions. We
investigated gender classification, contrastive loss and triplet loss
based pre-training of the embedding layers. Since our objective is
to operate in the low-latency regime, we trained our networks using
2s speech segments extracted around ground truth speaker bound-
aries and during test time we evaluated them on 2s or shorter seg-
ments. For low-latency applications, test comparisons should be
made around ASR based segment boundaries. This framework also
allows us to annotate automatic closed captions with speaker change
information. However, these segments tend to be shorter than 2s,
causing a mismatch in duration. In our experiments, we compared
neural network embeddings with i-vectors and PLP on a broadcast
news dataset. We showed that jointly trained neural network embed-
dings perform substantially better than i-vectors or frozen embed-
dings. Experimental results showed that pre-training using triplet
loss with Euclidean distance followed by joint training of the clas-
sifier achieved higher F-measure (7-50% relative improvements) in
both matched and mismatched (duration and boundary) cases than
i-vectors. Therefore, lower dimensional jointly trained network em-
beddings provide a compact representation that is robust to the mis-
match between training and testing conditions.
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