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ABSTRACT
The speech chain mechanism integrates automatic speech recogni-
tion (ASR) and text-to-speech synthesis (TTS) modules into a single
cycle during training. In our previous work, we applied a speech
chain mechanism as a semi-supervised learning. It provides the abil-
ity for ASR and TTS to assist each other when they receive unpaired
data and let them infer the missing pair and optimize the model
with reconstruction loss. If we only have speech without transcrip-
tion, ASR generates the most likely transcription from the speech
data, and then TTS uses the generated transcription to reconstruct
the original speech features. However, in previous papers, we just
limited our back-propagation to the closest module, which is the
TTS part. One reason is that back-propagating the error through
the ASR is challenging due to the output of the ASR being discrete
tokens, creating non-differentiability between the TTS and ASR.
In this paper, we address this problem and describe how to thor-
oughly train a speech chain end-to-end for reconstruction loss us-
ing a straight-through estimator (ST). Experimental results revealed
that, with sampling from ST-Gumbel-Softmax, we were able to up-
date ASR parameters and improve the ASR performances by 11%
relative CER reduction compared to the baseline.

Index Terms— speech chain, end-to-end feedback loss, straight-
through estimator, ASR, TTS

1. INTRODUCTION
A speech chain [1] is a viewpoint that describes the speech com-
munication process in which the speaker produces words and gen-
erates speech sound waves, transmits the speech waveform through
a medium (i.e., air), and creates a speech perception process in a
listeners auditory system to perceive what was said. The hearing
process is critical, not only for the listener but also for the speaker
herself. By simultaneously listening and speaking, the speaker can
monitor her volume, articulation, and the general comprehensibility
of her speech. Based on those observations, we simulated the speech
chain mechanism by coupling ASR and TTS and formed a machine
speech chain [2, 3], so that the machine can learn, not only to lis-
ten (by way of ASR) or speak (by way of TTS) but also listen while
speaking.

In our previous paper [2], we utilized the speech chain idea for
semi-supervised learning using paired and unpaired data. First, we
pretrained both ASR and TTS with a small amount of paired speech
and text data. Then, we subsequently used both the pretrained mod-
ules to complete the missing pair from the unpaired data. For ex-
ample, if we only have speech without transcription, ASR generates
the most likely transcription from the speech data with greedy or
beam-search decoding, and TTS uses the generated transcription to
reconstruct the original speech features. In this case, we trained the
TTS module with the reconstruction loss. For the reverse case, if

we only have text without any corresponding speech, TTS generates
speech, whose features ASR uses to reconstruct the original text. In
this case, we updated the ASR module with the reconstruction loss.
In Fig. 1(a), we illustrate a multispeaker speech chain loop between
the ASR and TTS modules.

However, the auditory feedback in a human speech chain hap-
pens almost constantly, not only during semi-supervised learning.
Furthermore, the close-loop feedback is also done end to end. But,
to simulate our speech chain mechanism to provide the ability to help
each other even during the supervised learning and perform a com-
pletely end-to-end feedback reconstruction loss, the main challenge
is to utilize TTS to improve our ASR module. One reason is that
back-propagating the error from the reconstruction loss through the
ASR module is challenging due to the output of the ASR discrete to-
kens (grapheme or phoneme), creating non-differentiability between
the TTS and ASR modules (Fig. 1(b)).

We address this problem using a straight-through estimator [4, 5]
to predict the gradient through discrete variables (Fig. 1(c)). We
mainly focus on describing how to thoroughly train a speech chain
end-to-end by adding a reconstruction term from the TTS module
and backpropagated the gradient through the ASR. Experimental re-
sults revealed that, with teacher-forcing and sampling from Gumbel-
Softmax, we are now able to updated ASR parameters and improved
the ASR performances significantly by 11% relative CER reduction
compared to the baseline.

2. SPEECH CHAIN AND END-TO-END FEEDBACK LOSS
In the speech chain mechanism, given speech features x = [x1, .., xS ]
(e.g., Mel-spectrogram) and text y = [y1, .., yT ], we feed the
speech to the ASR module, and the ASR decoder generates contin-
uous vector hd

t step-by-step. To calculate probability vector py =
[py1 , .., pyT ], we apply the softmax function pyt = softmax(hd

t )
to decoder output hd

t . For each class probability mass in pyt , pyt [c]
was defined as:

pyt [c] =
exp(hd

t [c]/τ)∑C
i=1 exp(hd

t [i]/τ)
, ∀c ∈ [1..C]. (1)

Here C is the total number of classes, hd
t ∈ RC are the logits pro-

duced by the last decoder layer, and τ is the temperature parame-
ters. Setting temperature τ using a larger value (τ > 1) produces a
smoother probability mass over classes [6].

For the generation process, we generally have two different
methods:

1. Conditional generation given ground-truth (teacher-forcing):
If we have paired speech and text (x,y), we can generate pyt
from autoregressive ASR decoder DecASR(yt−1,h

e), con-
ditioned to ground-truth text yt−1 in the current time-step and
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Fig. 1. a) Multispeaker machine speech chain mechanism; b) Baseline ([3]): feedback loss from TTS is only backpropagated through the TTS
module, and the ASR module is not updated because variable ŷ is non-differentiable; c) Proposal: feedback loss from TTS is backpropagated
through discrete variable ŷ, and ASR modules are updated based on the estimated gradient from the TTS module by a straight-through
estimator.

encoded speech feature he = EncASR(x). At the end, the
length of probability vector py is fixed to T time-steps.

2. Conditional generation given previous step model prediction:
Another generation process to decode ASR transcription uses
its own prediction to generate probability vector pyt . There
are many different generation methods, such as greedy de-
coding (1-best beam-search) (ỹt = argmax

c
pyt [c]), beam-

search, or stochastic sampling (ỹt ∼ Cat(pyt)).

After the generation process, we obtained probability vector py

and applied discretization from continuous probability vector pyt
to ỹt either by taking the class with the highest probability or sam-
pling from a categorical random variable. After getting a single
class to represent the probability vector, we encode it into vec-
tor [0, 0, .., 1, .., 0] with one-hot encoding representation and give
it to the TTS as the encoder input. The TTS reconstructs Mel-
spectrogram x̂ with the teacher-forcing approach. The reconstruc-
tion loss is calculated:

Lrec
TTS =

1

S

S∑
s=1

(xs − x̂s)2, (2)

where x̂s is the predicted (or reconstructed) Mel-spectrogram and xs
is the ground-truth spectrogram at s-th time-step.

We directly calculated the gradient from the reconstruction loss
w.r.t TTS parameters (∂Lrec

TTS/∂θTTS) because all the operations
inside the TTS module are continuous and differentiable. However,
we could not calculate the gradient from the reconstruction loss w.r.t
ASR parameters (∂Lrec

TTS/∂θASR) because we have a discretiza-
tion operation from pyt → onehot(ỹt). Therefore, we applied
a straight-through estimator to enable the loss from Lrec

TTS to pass
through discrete variable ỹt.

2.1. Straight-through Argmax
The straight-through estimator [4, 5] is a method for estimating
or propagating gradients through stochastic discrete variables. Its
main idea is to backpropagate through discrete operations (e.g.,
argmax

c
pyt [c] or sampling ỹt ∼ Cat(pyt)) like an identity func-

tion. We describe the forward process and the gradient calculation
with a straight-through estimator in Fig. 2.

In the implementation, we created a function with different for-
ward and backward operations. For argmax one-hot encoding func-
tion, we formulated the forward operation:

Fig. 2. Straight-through estimator on argmax function. Given
input x and model parameters θ, we calculate categorical proba-
bility mass P (x; θ) and apply discrete operation argmax. In the
backward pass, the gradient from stochastic node y to P (x; θ),
∂y/∂P (x; θ) ≈ 1 is approximated by identity.

z̃t = argmax
c

pyt [c] (3)

ỹt = onehot(z̃t). (4)

Here we describe ỹt as a one-hot encoding vector with the same
length as the pyt vector. When the loss is calculated and the gra-
dients are backpropagated from loss Lrec

TTS , we formulate the back-
ward operation:

∂ỹt
∂pyt

≈ 1. (5)

Therefore, when we back-propagate the loss from Eq. 2 with the
straight-through estimator approach, we calculate the TTS recon-
struction loss gradient w.r.t θASR:

∂Lrec
TTS

∂θASR
=

T∑
t=1

∂Lrec
TTS

∂ỹt
· ∂ỹt
∂pyt

· ∂pyt
∂θASR

(6)

≈
T∑

t=1

∂Lrec
TTS

∂ỹt
· 1 · ∂pyt

∂θASR
. (7)

2.2. Straight-through Gumbel Softmax
Besides taking argmax class from probability vector pyt , we also
generated a one-hot encoding by sampling with the Gumbel-Softmax
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Fig. 3. Given speech feature x, ASR generates a sequence of proba-
bility py = [py1 , py2 , ..., pyT ]. If we have a ground-truth transcrip-
tion, we can calculateLASR (Eq. 16). TTS module generates speech
features, and we calculate reconstruction loss Lrec

TTS (Eq. 2). After
that, the gradients based on LASR are propagated through the ASR
module, and the gradients based on Lrec

TTS are propagated through
the TTS and ASR modules by a straight-through estimator.

distribution [7, 8]. Gumbel-Softmax is a continuous distribution that
approximates categorical samples, and the gradients can be calcu-
lated with a reparameterization trick. For Gumbel-Softmax, we re-
placed the softmax formula for calculating pyt (Eq. 1):

pyt [c] =
exp((hd

t [c] + gc)/τ)∑C
i=1 exp((hd

t [i] + gi)/τ)
, ∀c ∈ [1..C]. (8)

where g1, .., gC are i.i.d samples drawn from Gumbel(0, 1) and τ is
the temperature. We sample gc by drawing samples from the uniform
distribution:

uc ∼ Uniform(0, 1) (9)
gc = − log(− log(uc)), ∀c ∈ [1..C]. (10)

To generate a one-hot encoding, we define our forward operation:
z̃t ∼ Categorical(pyt [1], pyt [2], ..., pyt [C]) (11)

ỹt = onehot(z̃t). (12)

At the backpropagation time, we use the same straight-through es-
timator (Eq. 5) to allow the gradients to flow through the discrete
sampling operation from Eq. 11.

2.3. Combined Loss for ASR
Our final loss function for ASR is a combination from negative likeli-
hood (Eq. 16) and TTS reconstruction loss (Eq. 2) by sum operation:

LF
ASR = LASR + Lrec

TTS . (13)

To summarize our explanation in this section, we provide an illus-
tration in Fig. 3 that explains how sub-losses LASR and Lrec

TTS are
backpropagated to the rest of the ASR and TTS modules.

3. SEQUENCE-TO-SEQUENCE MODEL FOR ASR
A sequence-to-sequence model is a neural network that directly
models conditional probability p(y|x), where x = [x1, ..., xS ] is
the sequence of the (framed) speech features with length S and
y = [y1, ..., yT ] is the labels sequence with length T .

The encoder task processes input sequence x and generating rep-
resentative information he = [he

1, ..., h
e
S ] for the decoder. The atten-

tion module is an extension scheme that assists the decoder to find
relevant information on the encoder side based on the current de-
coder hidden states hd

t [9, 10]. Attention modules produce context
information ct at time t based on the encoder and decoder hidden
states:

ct =
S∑

s=1

at(s) ∗ he
s (14)

at(s) = Align(he
s, h

d
t )

=
exp(Score(he

s, h
d
t ))∑S

s=1 exp(Score(he
s, h

d
t ))

. (15)

There are several variations for score functions [11] such as
Score(he

s, h
d
t ): dot product (〈he

s, h
d
t 〉), bilinear (heᵀ

s Wsh
d
t ), where

Score : (RM × RN ) → R, M is the number of hidden units for
the encoder and N is the number of hidden units for the decoder.
Finally, the decoder task predicts target sequence probability pyt at
time t based on previous output and context information ct. The loss
function for ASR can be formulated:

LASR = − 1

T

T∑
t=1

C∑
c=1

1(yt = c) ∗ log pyt [c], (16)

where C is the number of output classes. Input x for the speech
recognition tasks is a sequence of feature vectors like a Mel-scale
spectrogram. Therefore, x ∈ RS×D , where D is the number of
features and S is the total frame length for an utterance. Output y,
which is a speech transcription sequence, can be either a phoneme
or a grapheme (character) sequence.

4. SEQUENCE-TO-SEQUENCE MODEL FOR TTS
Speech synthesis can be viewed as a sequence-to-sequence task
where a model generates speech given a sentence. We directly model
the conditional probability p(x|y) with a sequence-to-sequence
model, where y = [y1, ..., yT ] is the sequence of characters with
length T and x = [x1, ..., xS ] is the sequence of (framed) speech
features with length S. From the sequence-to-sequence ASR model
perspective, TTS is the reverse case where the model reconstructs
the original speech given the text.

In this work, our core architecture is based on Tacotron [12] with
several structural modifications [3]. The main difference between
our modified Tacotron and the default Tacotron is that we added an
additional speaker embedding projection layer into our decoder to
enable multispeaker training and generation. We also have an addi-
tional output layer to generate binary prediction bs ∈ [0, 1] (1 if the
s-th frame is the end of speech, otherwise 0).

For training the TTS model, we used the following loss function:
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LTTS =
1

S

S∑
s=1

(xMs − x̂Ms )2 + (xRs − x̂Rs )2

− (bs log(b̂s) + (1− bs) log(1− b̂s)),

(17)

where x̂M , x̂R, b̂ are the predicted log Mel-scale spectrogram, the
log magnitude spectrogram, and the end-of-frame probability, and
xM , xR, b is the ground-truth. In the decoding process, we use the
Griffin-Lim algorithm [13] to iteratively estimate the phase spectro-
gram and reconstruct the signal with inverse STFT.

5. EXPERIMENT
5.1. Dataset
We evaluated the performance of our proposed method on the Wall
Street Journal dataset [14]. Our settings for the training, develop-
ment, and test sets are the same as the Kaldi s5 recipe [15]. We
trained our model with WSJ-SI284 data. Our validation set was
dev 93, and our test set was eval 92.

We used the character sequence as our decoder target and fol-
lowed the preprocessing steps proposed by a previous work [16].
The text from all the utterances was mapped into a 32-character set:
26 (a-z) letters of the alphabet, apostrophes, periods, dashes, space,
noise, and “eos.” In all the experiments, we extracted the 40 dims +
∆ + ∆∆ (total 120 dimensions) log Mel-spectrogram features from
our speech and normalized every dimension into zero mean and unit
variance.

5.2. Model Details
For the ASR model, we used a standard sequence-to-sequence model
with an attention module (Section 3). On the encoder sides, the input
log Mel-spectrogram features were processed by three bidirectional
LSTMs (Bi-LSTM) with 256 hidden units for each LSTM: a total of
512 hidden units for the Bi-LSTM. To reduce the memory consump-
tion and processing time, we used hierarchical sub-sampling [17, 18]
on all three Bi-LSTM layers and reduced the sequence length by a
factor of eight. On the decoder sides, we projected one-hot encoding
from the previous character into a 256-dims continuous vector with
an embedding matrix, followed by one unidirectional LSTM with
512 hidden units. For the attention module, we used the content-
based attention + multiscale alignment (denoted as “Att MLP-MA”)
[19] with a 1-history size. In the evaluation stage, the transcription
was generated by beam-search decoding (size=5), and we normal-
ized the log-likelihood score by dividing it with its own length to
prevent the decoder from favoring shorter transcriptions. We did not
use any language model or lexicon dictionary in this work. In the
training stage, we tried ST-argmax (Section 2.1) and ST-gumbel soft-
max (Section 2.2). We also tried both teacher-forcing and greedy de-
coding to generate ASR probability vectors py in the training stage.
For each scenario, we treated temperature τ = [0.25, 0.5, 1, 2] as
our hyperparameter and searched for the best temperature based on
the CER (character error rate) on the development set.

For the TTS model, we used the TTS explained in Section 4.
The hyperparameters for the basic structure are generally the same
as those for the original Tacotron, except we replaced ReLU with
the LReLU function. For the CBHG module, we used K = 8 fil-
ter banks instead of 16 to reduce the GPU memory consumption.
For the decoder sides, we deployed two LSTMs instead of a GRU
with 256 hidden units. For each time-step, our model generated four
consecutive frames to reduce the number of steps in the decoding
process.

5.3. Experiment Result
For our baseline, we trained an encoder-decoder with MLP + mul-
tiscale alignment with a 1-history size [19]. We also added several

Table 1. ASR experiment result on WSJ dataset test eval92.
Baseline (LASR)

Model CER (%)
Att MLP [20] 11.08
Att MLP + Location [20] 8.17
Att MLP [21] 7.12
Att MLP-MA (ours) [19] 6.43

Proposed (LASR + Lrec
TTS)

Model pyt generation ST CER (%)
Att MLP-MA argmax 5.75
Att MLP-MA Teacher-forcing gumbel 5.7
Att MLP-MA argmax 5.84
Att MLP-MA Greedy gumbel 5.88

published results to our baseline. All of the baseline models were
trained by minimizing negative log-likelihood LASR (Eq. 16).

All the models in the proposed section were trained with a com-
bination from two losses: LASR + Lrec

TTS , and the ASR parameters
were updated based on the gradient from the sum of the two losses.
We have four different scenarios, most of which provide significant
improvement compared to the baseline model that is only trained
on LASR loss. With teacher-forcing and sampling from Gumbel-
softmax, we obtained 11% relative improvement compared to our
best baseline Att MLP-MA.

6. RELATED WORKS
Approaches that utilize end-to-end feedback learning from source-
to-target and vice-versa remain scant. Senrich et al. [22] improved
the NMT performance by back-translation on a monolingual dataset.
Semi-supervised learning for NMT called dual learning [23] was
also proposed by combining reconstruction loss and language model
reward. However, the feedback gradient provided by the reconstruc-
tion loss only limited the closest module to the loss. One primary
reason is that the nature of text modalities is represented by discrete
variables. Our previous speech chain paper [2, 3] focused on uti-
lizing the closed-loop between ASR and TTS as a semi-supervised
learning method. If one of the modalities of data is missing, we
can generate a pseudo-pair and train one of the models by recon-
struction loss. But, as we described earlier, the study also limit the
back-propagation to the closest module due to similar reason that the
output of the ASR is discrete tokens. In contrast, in this paper, we
successfully address the problem using a straight-through estimator
to predict the gradient through discrete variables.

7. CONCLUSIONS
We introduced a different perspective from a speech chain mecha-
nism. We trained our ASR module by adding feedback from the
TTS reconstruction loss. However, the ASR output is not differ-
entiable because of the transcription generated by the discretization
process. To address this problem, we used a straight-through esti-
mator to enable the gradient from the TTS module to flow through
discrete variables. We tried various scenarios with different decod-
ing and discretization processes. From our experimental results, with
teacher-forcing and sampling from Gumbel-Softmax, we improved
the ASR performances by 11% relative CER reduction compared to
our baseline.
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