
TOKEN-WISE TRAINING FOR ATTENTION BASED END-TO-END
SPEECH RECOGNITION

Peidong Wang∗

Department of Computer Science and Engineering
The Ohio State University, Columbus, USA

wang.7642@osu.edu

Jia Cui, Chao Weng, Dong Yu

Tencent AI Lab, Bellevue, USA
{jiaacui, cweng, dyu}@tencent.com

ABSTRACT

In attention based end-to-end (A-E2E) speech recognition
systems, the dependency between output tokens is typically
formulated as an input-output mapping in decoder. Due to
such dependency, decoding errors can easily propagate along
output sequence. In this paper, we propose a token-wise
training (TWT) method for A-E2E models. The new method
is flexible and can be combined with a variety of loss func-
tions. Applying TWT to multiple hypotheses, we propose a
novel TWT in beam (TWTiB) training scheme. Trained on
the benchmark Switchboard (SWBD) 300h corpus, TWTiB
outperforms the previous best training scheme on the SWBD
evaluation subset.

Index Terms— token-wise training, attention based end-
to-end speech recognition, early update, optimization

1. INTRODUCTION

Attention based end-to-end (A-E2E) speech recognition
systems map speech signals directly to tokens (charac-
ters/subwords/words) [1, 2, 3, 4, 5]. This enables their usage
of evaluation metrics such as character error rate (CER) and
word error rate (WER) directly as training objectives. In or-
der to back propagate CER/WER loss to model parameters,
Karita et al. introduced policy gradient [6] to A-E2E model
training [7]. The expected CER/WER is first calculated by
a sampling based method. Policy gradient is then applied to
directly optimize the expected CER/WER [8]. Inspired by
minimum Bayes risk (MBR) training for conventional hidden
Markov model (HMM) based systems [9], Prabhavalkar et
al. proposed minimum word error rate (MWER) training
for A-E2E systems [10]. The loss of MWER training is the
expected number of word errors. Due to the inefficiency of
calculating such loss, they use two approximation methods.
The first approach is based on sampling and the second one
uses the n-best hypotheses generated during training. Exper-
imental results show that the n-best hypotheses based loss
estimation outperforms the sampling based one. Weng et
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al. [5] improved MWER training with softmax smoothing
for the n-best hypotheses generation process. Competitive
results were obtained on the Switchboard (SWBD) 300h cor-
pus [5]. Recently, an investigation was conducted by Cui et
al. comparing various sequence discriminative training crite-
ria for A-E2E systems [11]. In addition to training criteria,
investigations of using subword units as output tokens were
also actively conducted [12, 13].

During the decoding process of A-E2E systems, output
tokens are used as inputs to generate the next token in the se-
quence. Due to such sequential dependency, correcting the
first few errors may be important to good recognition perfor-
mances. The fine-grained partial error proposed by Karita et
al. can be viewed as an attempt towards this direction [7].
With length-normalized edit distance, tokens at the beginning
of the output sequence are assigned more weights in the loss.
Their experimental results show that the employment of the
fine-grained partial error is crucial to the performance im-
provement [7].

An extreme case of weighting based approaches is to com-
pletely mask out the errors after the first wrong token. Such
a training scheme is called “early update” in natural language
processing (NLP) tasks such as tagging and parsing [14], ma-
chine translation [15], and spoken dialogue processing [16].

Early update may assign nonzero gradients to the param-
eters corresponding to correct tokens. For A-E2E speech
recognition, this may divert the training process and lead
to overfitting. In this paper, we propose a token-wise train-
ing (TWT) method for A-E2E systems. During each epoch,
TWT only updates the first wrong token in the output se-
quence, leaving all other tokens untouched. Applying TWT
to multiple hypotheses, we propose a novel TWT in beam
(TWTiB) training scheme. Experimental results on SWBD
300h corpus show that TWTiB outperforms not only MWER
but also a pretraining scheme yielding the previous best result
on the SWBD subset of the 2000 HUB5 evaluation set [4].

The rest of this paper is organized as follows. In Section 2,
we describe the TWT method for A-E2E speech recognition
systems. Section 3 and 4 contain the experimental setup and
results, respectively. We make a conclusion in Section 5.
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2. SYSTEM DESCRIPTION

2.1. Output Token Dependency

A typical A-E2E system can be expressed as equations (1) -
(3) during evaluation:

Henc = Encoder(X) (1)

pt = Decoder(yt−1,Henc) (2)

yt = argmax
i
{pt,i} (3)

where matrix X denotes the input audio features, Henc the en-
coded features, yt the output token at time t, pt the posterior
probability vector at t, and pt,i the probability at output node
i and time t. Note that decoder states and attention mecha-
nisms are omitted in these equations since they are not related
to our analysis below.

Without scheduled sampling, yt−1 in equation (2) is sub-
stituted by rt−1 in the golden transcription during training:

pt = Decoder(rt−1,Henc) (4)

To alleviate the mismatch between training and evalua-
tion, scheduled sampling [17] is commonly employed during
the training process. It uses a mixture of output token yt−1
and reference token rt−1:

pt = Decoder(st−1 ∈ {rt−1, yt−1},Henc) (5)

where st−1 is a token randomly selected from {rt−1, yt−1}.
In equation (5), due to the dependency of yt on yt−1, a

wrong output token at time t − 1 could easily cause errors in
the following tokens yt, yt+1, .... Assume that the first wrong
token in y is at tw. In an extreme case, the remaining tokens
in y may have no overlap with those in r at all, as is shown
in Fig. 1. The horizontal line on the left denotes the output
segment y1 : ytw−1 before ytw . Arrows pointing upwards
and downwards correspond to the reference token rtw and the
wrong token ytw , respectively. If we denote the lengths of r
and y as M and N , respectively, then the remaining tokens in
r and y after tw can be expressed as rtw+1 : rM and ytw+1 :
yN , respectively. The horizontal dashed line on the right of
Fig. 1 denotes that there is no overlap between rtw+1 : rM
and ytw+1 : yN . Based on Fig. 1, it may be important to
correct the first wrong token ytw during training. If ytw is
corrected, the optimization on ytw+1 : yN could be handled
with less effort.

2.2. Token-Wise Training

2.2.1. Position-Aware Loss Functions

Let lθ(yt, rt) denote the loss of hypothesis y at time t, L(θ)
the total loss over the training set, and θ the model parame-
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Fig. 1. An extreme case of r and y caused by ytw

ters. A position-unaware training scheme can be expressed as
follows:

L(θ) =
∑

(y,r)∈(Y,R)

1

T

T∑
t=1

lθ(yt, rt) (6)

where (Y,R) denotes hypothesis-reference pairs in the whole
training set and T is typically chosen to be min(M,N).

The above loss function treats all positions in the output
sequence equally, making it difficult to model the output to-
ken dependency in A-E2E models. A simple modification of
equation (6) is to assign more weights to lθ(yt, rt)’s at small
t’s:

L(θ)weighted =
∑

(y,r)∈(Y,R)

T∑
t=1

lθ(yt, rt)

t
(7)

Since the errors in ytw+1 : yN may relate to ytw im-
plicitly, it is difficult for weighting based methods such as
L(θ)weighted to assign appropriate weights to the errors after
tw. If we ignore the errors in ytw+1 : yN and assign ones
as weights for y1 : ytw , we can get the early update training
scheme as follows:

L(θ)early =
∑

(y,r)∈(Y,R)

1

tw

tw∑
t=1

lθ(yt, rt) (8)

Note that the gradients of lθ(yt, rt)’s w.r.t. the correctly
decoded segment y1 : ytw−1 may not be zero. Early update
could thus enforce parameter updates for the correct tokens.
This may divert the training process and lead to overfitting. In
order to avoid such problems, we propose token-wise training
(TWT) in equation (9) below:

L(θ)TWT =
∑

(y,r)∈(Y,R)

lθ(ytw , rtw) (9)

2.2.2. lθ(yt, rt) Selection

TWT defined in equation (9) can be combined with various
lθ(yt, rt)’s. In this study, we adopt two lθ(yt, rt)’s, Ref and
Ref+Err.
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Ref is essentially a cross entropy (CE) loss at time step
tw. It can be expressed as equation (10) below:

lθ(ytw , rtw) = − log ptw,rtw (10)

where ptw,rtw is generated following equation (5).
In addition to increasing the probability at the correct out-

put node rtw as in equation (10), Ref+Err reduces the proba-
bility at the wrong output node ytw at the same time:

lθ(ytw , rtw) = − log ptw,rtw + log ptw,ytw (11)

2.3. TWT in Beam

In the analysis above, TWT is used on a single hypothesis y.
In most cases, y is the hypothesis with the highest posterior
probability (i.e. the 1-best hypothesis). When applying TWT
to multiple hypotheses, we propose a novel TWT in beam
(TWTiB) approach.

A straightforward way to extend the TWT strategy to mul-
tiple hypotheses is to apply it for each hypothesis separately.
A potential problem of this method is that the TWT opera-
tions for different hypotheses may interfere with each other.
The proposed TWTiB scheme thus performs TWT on only
one hypothesis in the beam. The hypothesis is chosen to be
the one with the largest tw. This way, the beginning correct
segments of other hypotheses may not be influenced. Let yb

denote the chosen hypothesis and tb,w the time step of its first
wrong token, TWTiB can be expressed as follows:

L(θ)TWTiB =
∑

(y,r)∈(Y,R)

lθ(y
b
tb,w , rtb,w) (12)

3. EXPERIMENTAL SETUP

3.1. Data and Model

Our experiments are conducted on the Switchboard-1 Release
2 (SWBD) corpus. It contains 2,400 two-sided English con-
versations among 543 speakers. The total duration of the
recordings sums up to 260 hours. We use the 2000 HUB5
evaluation set in our experiments. The number of utterances
in this evaluation set is 4,458.

The input to the A-E2E model is the 40 dimensional log-
Mel feature extracted using Kaldi [18]. The output has 49
nodes corresponding to English letters, numbers, punctua-
tions, special transcribed notations in SWBD, and indicators
including ‘space’, ‘SOS’, and ‘EOS’. Note that the training
samples are selected by lengths. In our experiments, utter-
ances longer than 1800 frames are removed from the training
set.

The A-E2E model in our experiments is the input-feeding
listen, attend, and spell (LAS) model [3, 5]. The encoder con-
sists of six bidirectional long short-term memory (BLSTM)
layers. The number of units in each layer is 512. Different

from the encoder, the decoder uses two unidirectional LSTM
layers. Each layer also has 512 units.

3.2. Implementation Details

The baseline model is trained from scratch using the point-
wise cross entropy loss with rt−1 as part of the input to the
decoder, as is shown in equation (4). The learning rate is
initialized to 10−3 and is halved when the validation loss re-
duction is smaller than 0.01. The model is then further trained
with scheduled sampling until convergence. The WER of the
baseline model is 13.3%.

For TWT on a single hypothesis, y is selected to be the
1-best hypothesis during training and is compared with r to
find tw. Note that when M > N , i.e. hypothesis y is shorter
than reference r, the losses corresponding to rN+1 : rM are
ignored. Using Ref as lθ(yt, rt), the gradient at output node
rtw is set to −1 manually. Due to this manual gradient as-
signment, the A-E2E model cannot be optimized with the
simple backward function in PyTorch. In our implementa-
tion, the decoder projection layer (i.e. the last hidden layer)
is first detached from the A-E2E model as a separate model.
This detached model maps from the 512 dimensional decoder
output to the 49 dimensional softmaxed A-E2E model out-
put. After assigning −1 to the gradient corresponding to out-
put node rtw , the backward function of the detached model
is used to calculate the gradients w.r.t. the model parame-
ters. After generating the gradients for the detached layer, the
torch.autograd class in PyTorch is used to calculate the gradi-
ents for the rest of the A-E2E model automatically [19]. With
Ref+Err as the loss function, in addition to assigning −1 for
output node rtw , +1 is assigned to output node ytw .

For TWTiB, multiple hypotheses are generated using the
OpenNMT package [20]. A softmax smoothing factor of 0.8
is adopted to diversify the hypothesis space [21]. During
training, a heuristic posterior probability rescoring function
is used on the hypotheses in the beam [22]:

score(y, x) = logP (y|x)/(5 + |y|
5 + 1

)α (13)

where y is the output sequence, x is the input utterance, and
score(y, x) denotes the summation of log posterior probabil-
ities. Hyper-parameter α is selected to be 1.1 in our experi-
ments.

Different from MWER training [10], TWT does not need
regularization terms. Moreover, the TWT methods in this pa-
per do not use any word level information. During training,
the scale of the TWT loss is set to 1. In other words, −1 and
+1 are used directly as the gradients without scaling. The op-
timizer is chosen to be Adam, with a learning rate of 10−5.
No learning rate annealing is applied in our implementation.
The dropout rate is set to 0.2 and a temporary model is saved
every 131,072 frames. The model used for evaluation is se-
lected from the saved models.
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During evaluation, we apply both regular decoding as well
as a joint decoding method using an external LSTM LM [23,
11]. The LM is trained with the same transcriptions as the
A-E2E model.

4. EVALUATION RESULTS

4.1. Loss Functions and TWT Types

Our experiments involve two loss functions and two types of
TWT. The loss functions are Ref and Ref+Err. The two TWT
types are the standard TWT (operating on a single hypothe-
sis) and TWTiB. The results of different combinations of loss
functions and TWT types are shown in Table 1 below.

Table 1. Loss functions and TWT types
Loss TWT Type WER
Ref TWT 12.4

Ref+Err TWT 12.6
Ref TWTiB 12.0

We first compare the two loss functions by fixing the TWT
type to the standard TWT. As is shown in Table 1, Ref per-
forms better than Ref+Err. This may relate to the softmax
function in the A-E2E model. With the softmax function,
when the probability at output node rtw increases, the proba-
bility at node ytw decreases automatically.

After the comparison between the loss functions, we fix
the loss function to Ref and compare the two TWT types. Ta-
ble 1 shows that TWTiB obtains a 3.2% relative improvement
over the standard TWT. Note that although TWTiB requires
the generation of multiple hypotheses, it only performs TWT
on a single one. In the following sections, we use TWTiB as
a representative of the TWT method.

4.2. Results and Comparisons of TWTiB

The results and comparisons of TWTiB on the SWBD subset
of the 2000 HUB5 evaluation set are shown in Table 2 be-
low. Note that the number of hypotheses used in MWER and
TWTiB are both 4.

Table 2. Results and comparisons of TWTiB
LM CE MWER [5] TWTiB
w/o 13.3 12.2 12.0
w/ - 12.0 11.7

TWTiB outperforms the baseline CE criterion by 9.8%
relatively. It is also consistently better than MWER, both
with and without the external LM. Note that TWTiB does not
use regularization terms or word level information, whereas
MWER needs both.

In addition to the TWT based training schemes, we also
conducted experiments using the weighted loss and early up-
date method shown in equations (7) and (8), respectively. Due
to the reasons mentioned in Section 2, both of them diverged
during training and did not improve the baseline 13.3% A-
E2E model.

4.3. Comparisons with Previously Proposed Systems

The comparisons of TWTiB with some previously proposed
A-E2E systems are shown in Table 3 below. The systems
without the usage of external LMs are denoted as w/o LM. The
SWBD subset of the 2000 HUB5 evaluation set is denoted as
SWBD and the CallHome subset CH.

Table 3. Comparisons with other A-E2E speech recognition
systems

Systems SWBD CH
Seq2Seq + Trigram LM [2] 25.8 46.0
Pretraining + LSTMLM [4] 11.8 25.7

MWER w/o LM [5] 12.2 23.3
MWER + LSTMLM [11] 12.0 23.1

TWTiB w/o LM (proposed) 12.0 24.0
TWTiB + LSTMLM (proposed) 11.7 23.5

As mentioned in Section 4.2, TWTiB is better than other
training schemes when evaluated on the SWBD subset. Note
that the result of TWTiB on the CH subset is substantially
better than that of the pretraining method [4]. The best per-
formance on the CH subset is yielded by MWER. This may be
attributed to the fact that the optimization objective of MWER
is the expected WER and that word level edit distance may
have better generalization ability.

5. CONCLUDING REMARKS

In this paper, we have proposed a TWT method for A-E2E
speech recognition. It addresses two concerns in conven-
tional training schemes. The first one is that decoding er-
rors could propagate along the output sequence due to the
dependency between output tokens. The second is that the
enforced parameter update on correct tokens may divert the
training process and lead to overfitting. TWT avoids these
problems by only updating the first wrong token in the out-
put sequence. TWT is flexible and can be combined with
various loss functions. In this study, we investigate two of
them: Ref and Ref+Err. Applying TWT to multiple hypothe-
ses, we propose a novel TWTiB training scheme. Using four
hypotheses, TWTiB outperforms the previous best training
scheme on the SWBD evaluation subset. Future work in-
cludes applying TWTiB on large real world corpora, incorpo-
rating more advanced loss functions and word level informa-
tion into TWTiB, and combining TWTiB with other training
methods.
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