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ABSTRACT
We present a simple noise injection algorithm for training end-to-end
ASR models which consists in adding to the spectra of training utter-
ances the scaled spectra of random utterances of comparable length.
We conjecture that the sequence information of the “noise” utter-
ances is important and verify this via a contrast experiment where the
frames of the utterances to be added are randomly shuffled. Exper-
iments for both CTC and attention-based models show that the pro-
posed scheme results in up to 9% relative word error rate improve-
ments (depending on the model and test set) on the Switchboard 300
hours English conversational telephony database. Additionally, we
set a new benchmark for attention-based encoder-decoder models on
this corpus.

Index Terms— End-to-end ASR, noise injection

1. INTRODUCTION

The appeal of end-to-end approaches for ASR is a drastic simplifi-
cation of the pipeline required to build competitive acoustic models.
Indeed, all the steps related to discriminative and speaker depen-
dent feature extraction, phonetic context decision trees, HMM align-
ments, decoding graph construction, etc. can be effectively side-
stepped. One may naturally ask the question if DNN-HMM hybrid
acoustic models that require detailed knowledge of the aforemen-
tioned steps are a thing of the past. The answer, at least insofar
as the Switchboard corpus is concerned, is unfortunately negative as
demonstrated by the top performing systems [1, 2, 3, 4] which do not
include any end-to-end approaches. Consequently, bridging the gap
between hybrid and end-to-end models remains an active research
area for many sites [5, 6, 7, 8].

It is well known that noise injection in the inputs improves the
generalization capability of neural networks [9, 10]. In [10], the au-
thor shows that adding Gaussian noise with a small magnitude is
equivalent to adding a regularization term to the objective function
(squared error or cross-entropy) which encourages the network to
converge to a smoother (lower curvature) local optimum. In other
words, the training converges to a point where the output of the net-
work is less sensitive to small changes in the input which helps gen-
eralization. Noise can be applied at various levels during training
such as inputs, weights, or activations (e.g. dropout), but we will
limit the discussion to noise applied to the inputs.

Beyond the regularization effect of adding noise, noise benefits
in non-linear systems or “stochastic resonance” is a well-studied area
of research [11, 12, 13]. In particular, prior works have shown theo-
retically that addition of carefully-selected noise improves the speed
of convergence and performance of the expectation-maximization
algorithm [14], backprogation training of feed-forward [15], convo-
lutional [16] and recurrent neural networks [17], Markov chains [18],
and threshold neuron signal detection [19].

By their very nature, sequence-to-sequence (S2S) modeling
approaches such as connectionist temporal classification [20] and

attention-based S2S [21, 22, 23] can benefit greatly from noise
injection, perhaps more so than hybrid models. This is because
S2S models are much better at memorizing the training data, which
is detrimental to their generalization performance. Without noise
injection or other forms of data perturbation, the same training ut-
terance is presented to the model over and over again, eventually
leading to overfitting. A symptom of this overfitting is a training loss
that is significantly smaller than the held-out loss. For example, for
the same type of network (6-layer bidirectional LSTM) and same in-
put features, a phone CTC model trained on Switchboard 300 hours
has a ratio of 3.6 between held-out and training loss, while in the
hybrid HMM case the same size LSTM trained with cross-entropy
has a held-out to training loss ratio of only 1.2.

To combat this phenomenon, several authors in the ASR com-
munity have looked at noise injection to the inputs during train-
ing. In [24], the authors add noisy segments in the time domain
to improve the noise robustness of a DNN-HMM hybrid model.
In [7], the authors add background noise to 40% of randomly se-
lected utterances in every epoch when training CTC, RNN-T, and
attention-based models on a proprietary corpus. Another relevant
study is [25], which proposes mixup training [26] in which pairs of
input frames from two arbitrary subsequences are interpolated with
random weights and the same weights are used for creating soft tar-
gets from the corresponding pairs of 1-of-K hard targets (LSTM-
HMM hybrid model). The authors show that this helps on a mis-
matched test set like Hub5’00 CallHome without adversely affect-
ing performance on the matched Hub5’00 SWB test set. Lastly, in-
stead of noise injection, data augmentation techniques which vary
the speed and amplitude of the speech signal have also been suc-
cessful on this task [27].

The paper is organized as follows: in section 2 we study the
regularization effect of Gaussian noise on various losses, in section 3
we provide some empirical evidence of the utility of the proposed
approach, and in section 4 we summarize our findings.

2. NOISE INJECTION THEORY

2.1. Gaussian noise with cross-entropy loss

Let us first consider the case of Gaussian noise added to the input
features and study its effect on the cross-entropy (CE) loss. We will
borrow some notations and reproduce the derivation from [10, 24] in
the hope that readers who are unfamiliar with it will find the connec-
tion between noise injection and CE loss regularization interesting.
Denote the set of N input samples x1 . . .xN ∈ IRM and the cor-
responding targets t1 . . . tN ∈ {0, 1}K where K is the number of
classes. Also, let f(·; θ) : IRM → IRK be the mapping computed by
the neural network parameterized by weights θ. The cross-entropy
loss is expressed as:
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L(θ) = −
N∑
i=1

K∑
k=1

tki log fk(xi; θ) (1)

with f a continuous and twice-differentiable function of x. Consider
ξ a Gaussian noise variable with zero mean and covariance matrix
εI ∈ IRM×M where ε is a small positive number. Let us draw N
i.i.d. samples ξ1 . . . ξN from ξ. Applying the Taylor series expan-
sion to the CE loss viewed as a function of ξ1 . . . ξN around the
point x1 . . .xN , the loss with noise injection can be derived as fol-
lows:

L(ξ; θ) = −
N∑
i=1

K∑
k=1

tki log fk(xi + ξi; θ) (2)

≈ L(θ)−
N∑
i=1

K∑
k=1

tki

[
ξi
T ∇fk(xi)

fk(xi)
+

1

2
ξi
THk(xi)ξi

]
(3)

where we have dropped the dependency of fk on θ for easier read-
ability. The second order terms Hk are defined as

Hk(x) = − 1

f2
k (x)

∇fk(x)∇fk(x)T +
1

fk(x)
∇2fk(x) (4)

Since ξi is independent of ∇fk(xi)
fk(xi)

and IE {ξ} = 0, the first-
order term vanishes and we are left with:

L(ξ; θ) ≈ L(θ)− ε

2
Tr


K∑
k=1

N∑
i=1 s.t. tki =1

Hk(xi)

 (5)

The last equation shows that noise injection training is equiv-
alent to placing a regularization term on the loss with the weight
controlled by ε, the magnitude of the noise. According to [10],
Hk(x) simplifies to − 1

f2
k

(x)
∇fk(x)∇fk(x)T which is negative

semi-definite, meaning that the new loss function L(ξ; θ) will ac-
cept solutions in regions with low curvature. This makes the loss
function (and the network output) less sensitive to small changes in
the inputs which leads to better generalization.

2.2. Gaussian noise with CTC and attention loss

Here we extend the previous arguments to the CTC and attention
losses. Let y = y1 . . . yL, yi ∈ {1, . . . ,K} be a target sequence
of length L composed of either phones, characters or words and
x = x1 . . .xT the corresponding M -dimensional feature vector se-
quence with length T ≥ L. The CTC loss can be expressed as:

L(θ) = − log p(y|x) (6)

p(y|x) =
∑

z∈Φ−1(y)

p(z|x) =
∑

z∈Φ−1(y)

T∏
t=1

fzt(x; θ) (7)

where z = z1 . . . zT , zi ∈ {0, . . . ,K} are alignments consistent
with y obtained by either repeating symbols from y or by insert-
ing special BLANK symbols. z Φ7→ y is a mapping which removes

BLANKs and duplicate symbols from z and f is the (K + 1)-
dimensional mapping computed by the neural network with weights
θ. Note that here, unlike for the cross-entropy case, the outputs at
time t depend on the entire input sequence x not only on xt. The
sum of products in (7) can be efficiently calculated by a forward-
backward algorithm with a (2L+1)-state HMM topology with skip-
pable BLANK states as shown in [20].

In the case of attention loss, the posterior probability of the out-
put sequence y = y1 . . . yL given the input sequence x = x1 . . .xT
can be written as:

p(y|x) = p(y|h) =

L∏
l=1

p(yl|cl, y1, . . . , yl−1) (8)

where cl is the context for decoding step l and is computed by
weighting the encoder hidden state sequence h = h1 . . .hM (M ≤
T due to subsampling) by the attention γ i.e.:

cl =
M∑
t=1

γl,tht (9)

γl,t = exp(el,t)/

M∑
t′=1

exp(el,t′) (10)

el = f(h, γl−1,gl−1) (11)

where gl is the hidden state of the decoder at step l and el can be
computed in different ways depending on the attention mechanism.

Like in the previous subsection, define the noise injected loss for
either CTC or attention as:

L(ξ; θ) = − log p(y|x + ξ) (12)

with ξ = ξ1 . . . ξT i.i.d. samples drawn from N (0, εI). Using the
property IE {XY } = IE {X} IE {Y } for independent r.v.’s X and
Y , it can be shown that, like for the cross-entropy loss, the first-
order term in the Taylor expansion of L(ξ; θ) around x is zero and
we are left with:

L(ξ; θ) ≈ L(θ) +
ε

2
Tr

{
∂2L(ξ; θ)

∂ξ2

∣∣∣
ξ=0

}
(13)

where the second-order term is positive definite. Hence, the noise-
injected CTC and attention losses will have local minima in regions
of low curvature as well.

3. EXPERIMENTS AND RESULTS

All experiments were carried out on the Switchboard English con-
versational telephony corpus. The training set for our acoustic mod-
els consists of 262 hours of Switchboard 1 audio with segmentations
and transcripts provided by Mississippi State University which, in
keeping with tradition, we refer to as the Switchboard 300 hours
corpus. Similar to what we did in [3], we report results not only on
the Hub5’00 Switchboard (SWB) and CallHome (CH) test sets, but
also on RT’02 (6.4h, 120 speakers, 64K words), RT’03 (7.2h, 144
speakers, 76K words) and RT’04 (3.4h, 72 speakers, 36.7K words).
This is done in order to avoid overfitting to the Hub5’00 test sets,
which we consider to be stale due to extensive use by us and other
sites for almost two decades.
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3.1. Phone CTC experiments

The models are trained on VTL-warped log-mel spectra extracted
every 10ms using a Mel filterbank with 40 frequency bins. The
features are mean and variance normalized per conversation side
and augmented with ∆ and ∆∆ coefficients. We also skip every
other frame and stack every two consecutive frames to lessen the
computational demands on the neural network. Lastly, we append
a 100-dimensional speaker-dependent i-vector [28] resulting in 50
340-dimensional feature vectors per second.

We have trained 6-layer bidirectional LSTMs with 1024 cells per
layer and an output layer with 44 phones plus the BLANK symbol
using CTC with Nesterov momentum and a dropout rate of 0.25 for
19 epochs. We have used a fixed learning rate schedule where the
learning rate is kept constant at 0.01 for the first 10 epochs then gets
annealed by 1/

√
2 every epoch after that. Utterances are sorted in

ascending length order and are grouped into batches of size 32. The
batches are traversed in increasing length for the first epoch and are
randomly shuffled for the remaining epochs. The implementation is
done in PyTorch [29] with NVIDIA’s cuDNN backend and Baidu’s
warp-ctc extension for computing the CTC loss and gradients.
The training time is approximately one day on one P100 GPU. We
have experimented with the following types of noises applied to an
utterance x1 . . .xT :

• Gaussian noise (GN): x′i = xi + ξi, ξi ∼ N (0, σI),

• Sequence noise (SN): x′i = log[exp(xi) + λ exp(ni)] for a
random utterance n1 . . .nT and

• Sequence noise with randomized frames (RF):
x′i = log[exp(xi) +λ exp(nτ(i))], where τ is a random per-
mutation of {1, . . . , T}.

For the Gaussian noise experiments, we tried standard deviations
in the range 0.1 to 0.5 whereas for the sequence noise experiments,
we varied λ also from 0.1 to 0.5 and selected a random subset of 20%
of utterances without noise at every epoch. Note that, for SN and RF,
the noise is only added to the spectra and the ∆, ∆∆ coefficients are
recomputed whereas for GN, the noise is added to all dimensions.
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Fig. 1. Training and held-out phone CTC losses for baseline and
sequence noise experiments.

In Figure 1, we show the training and held-out phone CTC losses
for the sequence noise experiments with two values of λ. We observe
that, for larger λ, the training and held-out losses are closer to each

other. Also, the held-out losses converge to similar values whereas
the training losses are significantly different for the three runs.

SWB CH RT02 RT03 RT04 Avg.
Baseline 11.6 21.1 20.1 19.3 17.9 18.0
GN σ = 0.1 11.7 20.9 19.8 18.9 17.9 17.8
GN σ = 0.2 11.5 20.8 19.3 18.5 17.9 17.6
GN σ = 0.4 11.7 20.6 19.3 18.4 17.4 17.5
GN σ = 0.5 11.9 20.9 19.2 18.2 17.5 17.5
SN λ = 0.1 11.3 20.6 18.9 18.8 17.2 17.4
SN λ = 0.2 10.9 20.7 18.7 18.6 16.9 17.2
SN λ = 0.4 11.0 20.5 18.3 18.4 16.8 17.0
SN λ = 0.5 11.4 21.1 18.6 18.8 17.0 17.4
RF λ = 0.4 11.3 21.0 18.7 18.9 17.6 17.5

Table 1. Word error rates for the different noise injection experi-
ments for phone CTC models trained on Switchboard 300 hours.

All decodings were done using our legacy 30K word vocabulary
and a 4-gram language model with 4M n-grams. Table 1 shows the
recognition results for the various experiments. We note that all three
noise addition schemes result in gains over the baseline with an edge
for the sequence noise without frame randomization where the gains
range from 3% relative (CH) to 9% relative (RT’02) with an average
of 6% relative WER improvement. Frame randomization in the noise
utterances decreases the gains which shows that it is important to
preserve the sequence information in the noise.

3.1.1. Switchboard 2000 hours experiment

We wanted to verify whether the proposed technique scales up with
more training data by training phone CTC LSTMs on the Switch-
board + Fisher 2000 hours set. The models have the same input
features and architectures as the SWB 300h LSTMs, the only dif-
ference being that the output layer has 89 units corresponding to
88 word position-dependent phones + BLANK. The initial learning
rate was set to 0.005 and gets annealed by 1/

√
2 every epoch after

epoch number 8. The training time for 19 epochs was roughly 6 days
on one V100 GPU. For sequence noise injection, we used the best
configuration from our SWB 300h setup. Decoding was done with
an 85K word vocabulary and a 4-gram language model with 36M
n-grams [3]. The results are shown in Table 2.

SWB CH RT02 RT03 RT04 Avg.
Baseline 8.0 13.9 12.4 11.7 10.5 11.3
SN λ = 0.4 8.0 13.2 11.8 11.1 10.2 10.9

Table 2. Word error rates for phone CTC models with sequence
noise injection trained on Switchboard+Fisher 2000 hours.

Unsurprisingly, the gains (3.5% relative) are less compared to
the SWB 300 hours case but still substantial across all test sets except
for Hub5’00 SWB. Interestingly, the improvements on the Hub5’00
CallHome testset are larger than for the 300 hours training scenario.

3.2. Attention based encoder-decoder experiments

Our attention based encoder-decoder model is a modified version
of [30], and has the following structure. The encoder consists of 6
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Fig. 2. The attention based decoder network used in the encoder-
decoder experiments.

bidirectional LSTM layers, each having 384 nodes. Its input is 40-
dimensional vocal tract length normalized MFCC. The first layers
apply pyramidal processing as [21]. The input frame rate is reduced
by four in total, twice by factor of two at the outputs of the first
and second LSTM layers using max pooling. The LSTM outputs
from the forward and backward directions are summed up after every
layer. The final dimension of the encoder output is 256, enforced by
a linear bottleneck.

The decoder network is summarized in Fig. 2. As can be seen, it
contains two unidirectional LSTM layers with 256 nodes each, and
a single attention mechanism. A dedicated LSTM layer on top of
the embedding corresponds to a language-model-like component be-
cause its output depends only on the history of the decoded symbols.
The decoder network uses location aware attention mechanism as in
[23]. The previous attention is mapped to a 256-channel signal by
1-D convolution using 5-dimensional kernels. The energy function
of the attention calculation is performed by a single layer rectified-
linear-unit (ReLU) feed-forward neural network. It processes the
sum of the encoder output, the smoothed attention, and the output
of the decoder LSTM. Thus, all these three components have a fixed
size of 256. The output (and the embedding) models either 42 char-
acter or 600 sub-word units generated by byte-pair encoding (BPE)
[31].

All models were trained on the Switchboard 300 hours set by
optimizing cross-entropy loss only. The baseline character model
was trained from scratch for 60 epochs with a batch size of 32. Next,
this seed model was fine-tuned towards the final output targets using
a batch size of 16 for another 30 epochs. The model training was
carried out by teacher forcing with 80% probability [32]. Further-
more, a 20% dropout rate was applied to the LSTM outputs in the
encoder whereas in the decoder, the embedding output was dropped
with 5% and the LSTM output with 10% probability. In the initial
epochs, sequences were presented in increasing length order to the
network, similar to the CTC experiments.

The final performance of the encoder-decoder network was op-
timized on the Swichboard (SWB) part of the Hub5’00 set by tun-
ing the following hyper-parameters: length normalization, coverage
penalty term, posterior smoothing, or optionally the interpolation
weight of the language model whose score was fused in a shallow
fashion. The search used a fixed beam size of 50 and was con-
strained by a lexical prefix tree. The neural network language models

(NNLM) were trained on 24M words of the joint set of Switchboard
300 and Fisher data. The NNLMs have an embedding size of 512,
two LSTM layers with 2048 nodes, and a 128-dimensional bottle-
neck layer before the softmax output.

The effect of sequence noise injection on our attention based
encoder-decoder model is summarized in Table 3. We obtained the
best results when the sequence noise of a random utterance was in-
jected with 40% probability at λ = 0.3 scale. As shown, sub-word
units performed slightly better – 0.3% on average – than the charac-
ter model, but not on the development set (SWB). The application of
sequence noise on top of the BPE model resulted in a 0.7% absolute
gain. The positive effect of noise injection is clearly visible even af-
ter decoding with the neural network language model and, to the best
of our knowledge, we have achieved a new state-of-the-art recogni-
tion performance with attention-based models on the Switchboard
300 hours corpus.

LM Output SWB CH RT02 RT03 RT04 Avg.
char 12.7 24.3 22.5 23.1 22.5 21.0
BPE 600 12.7 23.2 21.8 22.2 23.7 20.7

+seq. noise 11.8 22.6 21.1 21.9 22.5 20.0

× BPE 600 10.6 22.1 19.2 20.2 20.7 18.6
+seq. noise 10.0 21.7 18.5 20.1 19.9 18.0

Table 3. Effect of sequence noise injection on various attention
based encoder-decoder models trained on Switchboard 300 hours.

4. DISCUSSION

Sequence noise injection improves the performance of end-to-end
models more than adding simple Gaussian noise or speech frames
without sequence information. We surmise that the structure in the
noise helps to enhance (or suppress) various regions in the input sig-
nal more effectively than noise frames without structure. What is
missing from this work is a theoretical insight beyond the Gaussian
case on why sequence information in the noise is important. Also,
from an empirical point of view, it is unclear if gains from data aug-
mentation and sequence noise injection are additive and we plan to
address that in future experiments.
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