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ABSTRACT

Recently, end-to-end models have become a popular approach as an
alternative to traditional hybrid models in automatic speech recog-
nition (ASR). The multi-speaker speech separation and recognition
task is a central task in cocktail party problem. In this paper, we
present a state-of-the-art monaural multi-speaker end-to-end auto-
matic speech recognition model. In contrast to previous studies
on the monaural multi-speaker speech recognition, this end-to-end
framework is trained to recognize multiple label sequences com-
pletely from scratch. The system only requires the speech mixture
and corresponding label sequences, without needing any indetermi-
nate supervisions obtained from non-mixture speech or correspond-
ing labels/alignments. Moreover, we exploited using the individual
attention module for each separated speaker and the scheduled sam-
pling to further improve the performance. Finally, we evaluate the
proposed model on the 2-speaker mixed speech generated from the
WSJ corpus and the wsj0-2mix dataset, which is a speech separation
and recognition benchmark. The experiments demonstrate that the
proposed methods can improve the performance of the end-to-end
model in separating the overlapping speech and recognizing the
separated streams. From the results, the proposed model leads to
∼ 10.0% relative performance gains in terms of CER and WER
respectively.

Index Terms— Cocktail party problem, multi-speaker speech
recognition, end-to-end speech recognition, CTC, attention mecha-
nism

1. INTRODUCTION

In the deep learning era, single-speaker automatic speech recogni-
tion systems have achieved a lot of progress. Deep neural networks
(DNN) and hidden markov model (HMM) based hybrid systems
have attained surprisingly good performance [1, 2, 3, 4]. Recently,
there has been a growing interest in developing end-to-end mod-
els for speech recognition [5, 6, 7], in which the various modules
of the hybrid systems, such as the acoustic model (AM) and lan-
guage model (LM), are folded into a single neural network model.
Two major approaches of end-to-end speech recognition systems
are connectionist temporal classification [8, 9] and attention-based
encoder-decoder [10, 11]. The performance of deep learning based
conventional speech recognition systems has been reported to be
comparable with, or even surpassing, human performance [3]. How-
ever, it is still extremely difficult to solve the cocktail party problem
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[12, 13, 14, 15], which refers to the task of separating and recogniz-
ing the speech from a specific speaker when it is interfered by noise
and speech from other speakers.

To address the monaural multi-speaker speech separation and
recognition problem, there has been a lot of research in single-
channel multi-speaker speech separation and recognition, which
aims to separate the overlapping speech and recognize the resulting
separated speech individually, given a single-channel multiple-
speaker mixtured speech. In [16, 17], a method called deep cluster-
ing (DPCL) was proposed for speech separation. DPCL separates
the mixed speech by training a neural network to project each time-
frequency (T-F) unit into a high-dimensional embedding space, in
which pairs of T-F units are close to each other if they have the
same dominating speaker and farther away otherwise. In addition to
segmentation using k-means clustering, a permutation-free mask ob-
jective was proposed to refine the output [17]. In [18, 19], a speech
separation method called permutation invariant training (PIT) was
proposed to train a compact deep neural network with the objective
that minimizes the average minimum square error of the best output-
target assignment at the utterance level. PIT was later extended to
train a speech recognition model for multi-speaker speech mixture
by directly optimizing with the ASR objective [20, 21, 22, 23].
In [24, 25], a joint CTC/attention-based encoder-decoder network
for end-to-end speech recognition [5, 6] was applied to multi-
speaker speech recognition. First, an encoder separates the mixed
speech into hidden vector sequences for every speaker. Then an
attention-based decoder is used to generate the label sequence for
each speaker. To avoid label permutation problem, a CTC objec-
tive is used in permutation-free manner right after the encoder to
determine the order of the label sequences. However, the model
needs to first be pre-trained on single-speaker speech so that decent
performance can be achieved.

In this paper, we explore several new methods to refine the end-
to-end speech recognition model for multi-speaker speech. Firstly,
we revise the model in [25] so that pretraining on single-speaker
speech is not required without loss of performance. Secondly, we
propose to use speaker parallel attention modules. In previous work,
the separated speech streams were treated equally in the decoder, re-
gardless of the energy and speaker characteristics. We bring in mul-
tiple attention modules [26] for each speaker to enhance the speaker
tracing ability and to alleviate the burden of the encoder similar to
[22]. Another method is to use scheduled sampling [27] to randomly
choose the token from either the ground truth or the model prediction
as the history information, which reduces the gap between training
and inference in the sequence prediction tasks. This would be ex-
tremely helpful in our setup, since the separation is not always per-
fect and we often observe mixed label results. Schedule sampling
can help to recover such errors during inference.

The rest of the paper is organized as follows: In Section 2, the
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end-to-end monaural multi-speaker ASR model and the proposed
new methods are described. In Section 3, we evaluate the proposed
approach on the 2-speaker mixing WSJ data set, and the experiments
and analysis are given. Finally the paper is concluded in Section 4.

2. END-TO-END MULTI-SPEAKER JOINT
CTC/ATTENTION-BASED ENCODER-DECODER

In this section, we first describe the end-to-end ASR system for
multi-speaker speech that has been used in [25]. Then we introduce
two techniques to improve the training process and performance of
the end-to-end ASR multi-speaker system, namely the speaker par-
allel attention and scheduled sampling [27].

2.1. End-to-End Multi-speaker ASR

In [5, 6, 28], an end-to-end speech recognition model was proposed
to take advantage of both the Connectionist Temporal Classifica-
tion (CTC) and attention-based encoder-decoder, in aim of using
the CTC to enhance the alignment ability of the model. An end-to-
end model for multi-speaker speech recognition was brought up in
[25], extending the joint CTC/attention-based encoder-decoder net-
work to be applied on multi-speaker speech mixtures and to allow
the permutation-free training in the objective function to address the
permutation problem. The model is shown in Fig.1, in which the
modules Attention 1 and Attention 2 share parameters. The input
speech mixture is first explicitly separated into multiple sequences
of vectors in the encoder, each representing a speaker source. These
sequences are fed into the decoder to compute the conditional prob-
abilities.

The encoder of the model can be divided into three stages,
namely the EncoderMix, EncoderSD and EncoderRec. Let O
denote an input speech mixture from S speakers. The first stage,
EncoderMix, is the mixture encoder, which encodes the input
speech mixture O as an intermediate representation H. Then, the
representation H is processed by S speaker-different (SD) encoders,
EncoderSD, with the outputs being referred to as feature sequences
Hs, s = 1, · · · , S. EncoderRec, the last stage, transforms the
features sequences to high-level representations Gs, s = 1, · · · , S.
The encoder is computed as

H = EncoderMix(O) (1)
Hs = EncoderSD

s(H), s = 1, · · · , S (2)
Gs = EncoderRec(H

s), s = 1, · · · , S (3)

In the single-speaker joint CTC/attention-based encoder-decoder
network, the CTC objective function is used to train the atten-
tion model encoder as an auxiliary task right after the encoder
[5, 6, 28]. While in the multi-speaker framework, the CTC objective
function is also used to perform the permutition-free training as
in Eq.4, which is referred to as permutation invariant training in
[15, 18, 20, 21, 22, 23, 29, 30].

π̂ = argmin
π∈P

∑
s

Lossctc(Y
s,Rπ(s)), (4)

where Ys is the output sequence variable computed from the en-
coder output Gs, π(s) is the s-th element in a permutation π of
{1, · · · , S}, and R is the reference labels for S speakers. Later,
the permutation π̂ with minimum CTC loss is used for the reference
labels in the attention-based decoder in order to reduce the compu-
tational cost.

After obtaining the representations Gs, s = 1, · · · , S from
the encoder, an attention-based decoder network is used to decode
these streams and output label sequence Ys for each representation
stream according to the permutation determined by the CTC objec-
tive function. For each pair of representation and reference label
index (s, π̂(s)), the decoding process is described as the following
equations:

patt(Y
s,π̂(s)|O) =

∏
n

patt(y
s,π̂(s)
n |O, ys,π̂(s)1:n−1) (5)

cs,π̂(s)n = Attention(a
s,π̂(s)
n−1 , e

s,π̂(s)
n−1 ,Gs) (6)

es,π̂(s)n = Update(e
s,π̂(s)
n−1 , c

s,π̂(s)
n−1 , y

π̂(s)
n−1) (7)

ys,π̂(s)n ∼ Decoder(cs,π̂(s)n , y
π̂(s)
n−1) (8)

where cs,π̂(s)n denotes the context vector, es,π̂(s)n is the hidden state
of the decoder, and rπ̂(s)n is the n-th element in the reference label
sequence. During training, the reference label rπ̂(s)n−1 in R is used as a
history in the manner of teacher-forcing, instead of yπ̂(s)n−1 in Eq.7 and
Eq.8. And, Eq.5 means the probability of the target label sequence
Y = {y1, · · · , yN} that the attention-based encoder-decoder pre-
dicted, in which the probability of yn at n-th time step is dependent
on the previous sequence y1:n−1.

The final loss function is defined as

Lmtl = λLctc + (1− λ)Latt, (9)

Lctc =
∑
s

Lossctc(Y
s,Rπ̂(s)), (10)

Latt =
∑
s

Lossatt(Y
s,π̂(s),Rπ̂(s)), (11)

where λ is the interpolation factor, and 0 ≤ λ ≤ 1.

2.2. Speaker parallel attention modules

Representation 𝐆" Representation 𝐆#

Reference 𝐑" Reference 𝐑#

ℒ&'&	
Permutation invariant training Attention 1 Attention 2

Decoder

Permutation 𝐑)*

Recognition encoder

Input mixture 𝐎

Mixture encoder

SD encoder 1 SD encoder 2

Fig. 1. End-to-End Multi-speaker Speech Recognition Model in the
2-Speaker Case

Due to the differences in the characteristics of speakers and en-
ergy, the encoder usually has to compensate for those differences
while separating the speech. The motivation of speaker parallel at-
tention module that we proposed is to alleviate the burden for the en-
coder and to make the attention-decoder learn to filter the separated
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speech as well while keeping the model compact. In light of [22], we
proposed to use independent attention modules called speaker paral-
lel attention. Fig.1 illustrates the architecture of the model, in which
Attention 1 and Attention 2 are not sharing. The computation process
in Eq.6 should be rewritten in a stream-specific way, in particular for
the s-th stream, as:

cs,π̂(s)n , as,π̂(s)n = Attentions(a
s,π̂(s)
n−1 , c

s,π̂(s)
n−1 ,Gs) (12)

2.3. Scheduled sampling

We generally trained the decoder network in a teacher-forcing fash-
ion, which means the reference label token rn, not the predicted
token yn, is used to predict the next token in the sequence during
training. However, during inference, we are only accessible to the
predicted token yn from the model itself. This difference may lead
to performance degradation, especially in the multi-speaker speech
recognition task susceptible to the label permutation problem. We al-
leviate this problem by using the scheduled sampling technique [27].
During training, whether the history information is chosen from the
ground truth label or the prediction is done randomly with a prob-
ability of p from the the prediction and (1 − p) from ground truth.
Thus Eq.7 and Eq.8 should be changed as:

es,π̂(s)n = Update(e
s,π̂(s)
n−1 , c

s,π̂(s)
n−1 , h), (13)

ys,π̂(s)n ∼ Decoder(cs,π̂(s)n , h), (14)

where

b ∼ Bernoulli(p), (15)

h =

{
r
π̂(s)
n−1, if b = 0

y
π̂(s)
n−1, if b = 1

(16)

3. EXPERIMENT

3.1. Experimental setup

To evaluate our method, we used the artificially generated single-
channel two-speaker mixed signals from the Wall Street Journal
(WSJ) speech corpus according to [25], using the tool released by
MERL1. We used the WSJ SI284 to generate the training data,
Dev93 for development and Eval92 for evaluation. The durations
for the training, development and evaluation sets of the mixed data
are 98.5 hr, 1.3 hr, and 0.8 hr respectively. In section 3.4, we also
compared our model with previous works on the wsj0-2mix dataset,
which is a standard speech separation and recognition benchmark
[16, 17, 24].

The input feature is 80-dimensional log Mel filterbank coeffi-
cients with pitch features and their delta and delta delta features ex-
tracted using the Kaldi [31]. Zero mean and unit variance are used
to normalize the input features. All the joint CTC/attention-based
encoder-decoder networks for end-to-end speech recognition were
built based on the ESPnet [7] framework. The networks were initial-
ized randomly from uniform distribution in the range −0.1 to 0.1.
We used the AdaDelta algorithm with ρ = 0.95 and ε = 1e − 8.
During training, we set the interpolation factor λ in Eq.9 to be 0.2.
We revise the deep neural network, replacing the original encoder
layers with shallower but wider layers [32], so that the performance
can be good enough without pre-training on single-speaker speech.

1http://www.merl.com/demos/deep-clustering/create-speaker-
mixtures.zip

To make the model comparable, we set all the neural network
models to have the same depth and similar size. We use the VGG-
motivated CNN layers and bidirectional long-short term memory re-
current neural networks with projection (BLSTMP) as the encoder.
The total depth of the encoder is 5, namely two CNN blocks and
three layer BLSTMP layers. For all models, the decoder network has
1 layer of unidirectional long-short term memory network (LSTM)
with 300 cells.

During decoding, we combined both the joint CTC/attention
score and the pretrained word-level recurrent neural network lan-
guage model (RNNLM) score, which had 1-layer LSTM with 1000
cells and was trained on the transcriptions from WSJ SI284, in a
shallow fusion manner. We set the beam width to be 30. The inter-
polation factor λ we used during decoding was 0.3, and the weight
for RNNLM was 1.0.

3.2. Performance of baseline systems

In this section, we describe the performance of the baseline E2E
ASR systems on multi-speaker mixed speech. The first baseline sys-
tem is the joint CTC/attention-based encoder-decoder network for
single-speaker speech trained on WSJ corpus, whose performance is
0.9% in terms of CER and 1.9% in terms of WER on the eval92 5k
test set with the closed vocabulary. In the encoder, there are 3 lay-
ers of BLSTMP following the CNN and each BLSTMP layer has
1024 memory cells in each direction. The second baseline system
is the joint CTC/attention-based encoder-decoder network for multi-
speaker speech. The 2-layer CNN is used as the EncoderMix. The
depth of the following BLSTMP layers is also 3 including 1 layer
of BLSTMP as the EncoderSD and 2 layers of BLSTMP as the
EncoderRec. The attention-decoder in the multi-speaker system is
shared among representations Gs, which is of the same architecture
with single-speaker system. The results are shown in Table 1.

Model dev CER eval CER
single-speaker 79.13 76.52

multi-speaker [25] n/a 13.7
multi-speaker 15.14 12.20

Model dev WER eval WER
single-speaker 113.47 112.21
multi-speaker 24.90 20.43

Table 1. Performance (Avg. CER & WER) (%) on 2-speaker mixed
WSJ corpus. Comparison between End-to-End single-speaker and
multi-speaker joint CTC/attention-based encoder-decoder systems

In the case of single-speaker, the CER and WER is measured
by comparing the output against the reference labels of both speak-
ers. From the table, we can see that the speech recognition sys-
tem designed for multi-speaker can improve the performance for the
overlapped speech significantly, leading to more than 80.0% rela-
tive reduction on both average CER and WER. As a comparison,
we also include the CER result from [25] in the table, and it shows
that the newly constructed end-to-end multi-speaker system without
pretraining in this work can achieve better performance.

3.3. Performance of speaker parallel attention with scheduled
sampling

In this section we report the results of the evaluation of our pro-
posed methods. The first method is the speaker parallel attention,
introducing independent attention modules for each speaker source
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instead of using a shared attention module. The rest of the network
is kept the same as the baseline multi-speaker model, containing a
2-layer CNN EncoderMix, 1-layer BLSTMP EncoderSD, a 2-layer
BLSTMP EncoderRec, and a shared 1-layer LSTM as the decoder
network. The performance is illustrated in the Table 2. The speaker
parallel attention module reduces the average CER by 9% and aver-
age WER by 8% relatively. From the results we can tell that the CER
is high, so the gap is large between the training and inference using
the teacher-forcing fashion. Thus we adopted the scheduled sam-
pling method with probability p = 0.2 in Eq. 15, which lead to a
further improvement in performance. Finally, the system using both
speaker parallel attention and scheduled sampling can obtain relative
∼ 10.0% reduction on both CER and WER on the evaluation set.

Model dev CER eval CER
multi-speaker (baseline) 15.14 12.20
+ speaker parallel attention 14.80 11.11

++ scheduled sampling 14.78 10.93
Model dev WER eval WER
multi-speaker (baseline) 24.90 20.43
+ speaker parallel attention 24.88 18.76

++ scheduled sampling 24.52 18.44

Table 2. Performance (Avg. CER & WER) (%) on 2-speaker mixed
WSJ corpus. Comparison between End-to-End multi-speaker joint
CTC/attention-based encoder-decoder systems
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Fig. 2. Visualization of the attention weights sequences for two over-
lapped speakers. The left part is from the previous single-attention
multi-speaker end-to-end model and the right part is from the pro-
posed speaker-parallel-attention multi-speaker end-to-end model.

We show the visualization of the attention weights sequences for
two overlapped speakers, generated by the baseline single-attention
multi-speaker end-to-end model and the proposed speaker-parallel-
attention multi-speaker end-to-end model individually. The hori-
zontal axis represents the output token sequence and the vertical
axis represents the input sequence to the attention module. The
left parts of Figures.2 (a) and (b) show the attention weights for
speaker 1 and speaker 2 generated by the previous single-attention
model. The right parts show the attention weights generated by the
proposed speaker-parallel-attention model. We can observe that the
right parts are more smooth and clear, and the attention weights are
more concentrated. This observation conforms with the characteris-
tics of alignments between output sequence and input sequence for

speech recognition, and further shows the superiority of the proposed
speaker parallel attentions.

3.4. Comparison with previous work

We then compared our work with other related work. We trained and
tested our model on wsj0-2mix dataset that was first used in [16].
Table 3 shows the WER results of hybrid systems including PIT-
ASR [23], DPCL-based speech separation with Kaldi-based ASR
[17], and the end-to-end systems constructed in [25] and ours in this
paper. These were evaluated under the same evaluation data and
metric as in [17] based on the wsj0-2mix. Noted that the model
in [25] was trained on a different, larger training dataset than that
used in other experiments. From Table. 3, we can observe that our
new system constructed by the proposed methods in this paper is
significantly better than the others.

Model Avg. WER
DPCL+ASR [17] 30.8

PIT-ASR [23] 28.2
End-to-end ASR (Char/Word-LM) [25] 28.2

Proposed End-to-end ASR with SPA (Word LM) 25.4

Table 3. WER (%) on 2-speaker mixed WSJ0 corpus. The com-
parison is done between our proposed end-to-end ASR with speaker
parallel attention (SPA) and previous works including DPCL+ASR,
PIT-ASR and end-to-end ASR systems.

4. CONCLUSION

In this paper, we have introduced a state-of-the-art end-to-end multi-
speaker speech recognition system under the joint CTC/attentin-
based encoder-decoder framework. More specifically, a new neural
network architecture enabled us to train the model from random
initialization. And we adopted the speaker parallel attention module
and scheduled sampling to improve performance over the previous
end-to-end multi-speaker speech recognition system. The exper-
iments on the 2-speaker mixed speech recognition show that the
proposed new strategy can obtain a relative ∼ 10.0% improvement
on CER and WER reduction.
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