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ABSTRACT

This paper investigates the use of subband temporal envelope (STE)
features and speed perturbation based data augmentation in end-to-
end recognition of distant conversational speech in everyday home
environments. STE features track energy peaks in perceptual fre-
quency bands which reflect the resonant properties of the vocal tract.
Data augmentation is performed by adding more training data ob-
tained after modifying the speed of the original training data. Exper-
iments show that using STE features and speed perturbation based
data augmentation helps improving the performance of end-to-end
speech recognition on a challenging corpus which was used for the
CHiME 2018 speech separation and recognition challenge. STE fea-
tures provide up to 2.0% relative word error rate (WER) reduction
compared to the conventional log-Mel filter-bank (FBANK) features.
Data augmentation is used with both features and provides up to
5.2% relative WER reduction. We propose a simple hypothesis se-
lection method to combine the hypotheses produced by the end-to-
end systems using FBANK and STE features. This method addition-
ally provides up to 4.7% relative WER reduction.

Index Terms— End-to-end speech recognition, subband tempo-
ral envelope features, speed perturbation based data augmentation,
CHiME 2018, distant conversational speech

1. INTRODUCTION

End-to-end automatic speech recognition (ASR) aims at using a sin-
gle neural network architecture within a deep learning framework to
perform speech-to-text task [1]. The architectures used for end-to-
end ASR could be either attention-based encoder-decoder [2], con-
nectionist temporal classification (CTC) [1] or hybrid CTC/attention
[3]. The development of end-to-end ASR system is simplified be-
cause the training does not need a pronunciation lexicon and the
whole explicit modeling of phones [1].

End-to-end ASR often use log-Mel filter-bank (FBANK) fea-
tures created by skipping the discrete cosine transform (DCT) in
the Mel frequency cepstral coefficient (MFCCs) computation [4].
FBANK features are spectral features which can be computed from
a time-frequency representation of speech obtained with the discrete
Fourier transform (DFT). The FBANK feature vectors are computed
from speech frames which are independently extracted every 10 ms.

Temporal envelope features could carry temporal context infor-
mation which is not explicitly extracted by the conventional spectral
FBANK features. Various temporal features have been developed
for ASR [5, 6, 7, 8]. In this work, we investigate the use of the
subband temporal envelope (STE) features [7] in attention-based or
hybrid CTC/attention end-to-end ASR in which a recurrent neural
network (RNN) encoder is used. STE features track energy peaks in
perceptual frequency bands which reflect the resonant properties of

the vocal tract. These are temporal information about transients that
are not present in the conventional spectral FBANK features. The
temporal context information carried by the STE features could pro-
vide additional benefit for the RNN encoder which is better at finding
and exploiting long range context from the input features [1].

For experiments, we use a large-scale corpus (CHiME-5) of
real multi-speaker conversational speech recorded via commercially
available multi-microphone hardware in multiple homes. This cor-
pus was first recorded to use in the CHiME 2018 speech separation
and recognition challenge [9]. The main difficulty of this corpus
comes from the source and microphone distance in addition to the
spontaneous and overlapped nature of the speech. In end-to-end
ASR on such a challenging task, the conventional FBANK features
are still widely used thanks to their effectiveness over alternative
input features such as raw speech waveform [10, 11, 12, 13].

End-to-end ASR would benefit from having more data for train-
ing the neural network architecture [14, 15]. In this respect, we in-
vestigate the use of speed perturbation based data augmentation [16]
for end-to-end ASR on this corpus. The performance of the STE
features is evaluated in comparison with the conventional FBANK
features. We show the effectiveness of the STE features and data
augmentation in this challenging task for end-to-end ASR.

Combining systems using STE and FBANK features could
provide additional WER reduction [7]. As the training of hybrid
CTC/attention end-to-end ASR systems does not use alignment in-
formation, these systems are not able to provide outputs with exact
monotonic time-aligned information [3, 17]. System combination
techniques, e.g. lattice combination based on Bayes risk minimiza-
tion [18] or ROVER (recognizer output voting error reduction) [19],
use time-aligned information in the ASR outputs produced during
the decoding to combine the ASR outputs. Without time-aligned
information, it is not straightforward to apply these techniques to
combine attention-based end-to-end ASR systems. In this paper, we
propose a simple hypothesis selection method to combine the hy-
potheses produced by the systems using FBANK and STE features.
This method is able to provide additional WER reduction.

The paper is organized as follows. Section 2 presents related
works. The STE features extraction is presented in section 3.
CHiME-5 corpus is presented in section 4. Section 5 provides
details on the data augmentation method. Information on the end-to-
end ASR system, namely the front-end processing, the end-to-end
architecture and the system combination method, is presented in
section 6. Section 7 presents the experimental results and section 8
concludes the paper.

2. RELATED WORKS

Recent works on features extraction for end-to-end ASR focus on
using raw speech waveform directly as input features [10, 11, 12,
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13]. In the approach using raw speech waveform as input features,
the end-to-end ASR architectures are often augmented with addition
layers for features computation. The computation cost is thus high
and in many cases, the performance of end-to-end ASR using raw
speech waveform as features is still worst than that of the system
using FBANK features [1]. In [12, 13], the authors reported the first
times end-to-end models trained from the raw signal significantly
outperform FBANK features on Wall Street Journal (WSJ) task [20].
WSJ corpus consists primarily of read speech. The data in WSJ
corpus is also quite clean and the speakers are close to microphones.

3. SUBBAND TEMPORAL ENVELOPE FEATURES

The algorithm for extracting the STE features is depicted in Fig.
1. Given a speech signal s[n], the M STE signals em[n], m =
1, . . . ,M of s[n] are extracted as follows. The speech signal s[n]
is first pre-emphasized by using a filter having a transfer function
H[z] = 1 − 0.97z−1. The pre-emphasized speech signal is then
decomposed into M subband signals sm[n], k = 1, . . . ,M using
a filter-bank consisting of M Gammatone band-pass filters. In this
work, the Gammatone filters implementation from [21] is used. Each
Gammatone band-pass filter in the filter-bank is implemented as a
cascade of four separate second order IIR (infinite impulse response)
filters. This implementation is done to avoid round-off errors [21].
The center frequencies of the Gammatone filters are linearly spaced
on the ERB (equivalent rectangular bandwidth) scale with the first
one starts at 100 Hz.

Fig. 1. Algorithm for extracting the STE features.

The STEs em[n], m = 1, . . . ,M of the subband signals sm[n],
m = 1, . . . ,M are then extracted by, first, full-wave rectifying the
subband signals followed by a zero-phase low-pass filtering of the re-
sulting signals. In this work, the low-pass filter for extracting STEs
is a fourth-order elliptic low-pass filter with 2-dB of peak-to-peak
ripple and a minimum stop-band attenuation of 50-dB. The cut-off
frequency of this low-pass filter, which controls the bandwidth of the
STEs, is 50 Hz because this ensures a reasonable STE bandwidth for
human and machine speech recognition [22, 7]. The zero-phase fil-
tering is performed by processing the input data in both the forward
and reverse directions. After the data is filtered in the forward direc-
tion, the filtered sequence is reversed and run back through the filter.
An example of the slowly-varying STE, extracted by this method, is
shown in Fig. 2.

From the STEs em[n], m = 1, . . . ,M extracted from the whole
utterance, short-term frames of 25 ms are extracted every 10 ms.
The short-term frames are multiplied with Hamming windows to
emphasize the samples in the middle of the analysis frames. At
time instant k, assume that êm,k[n],m = 1, . . . ,M are the short-
term STEs obtained after the Hamming windowing, a feature vec-
tor yk = [y1,k, y2,k, . . . , yM,k]

T is extracted. A feature coefficient
ym,k is computed as follows:

Fig. 2. Slowly-varying STE (red curve) extracted from the 10th sub-
band signal of a speech segment of 800 ms.

ym,k =
1

N

N∑
n=1

ê2m,k[n],

where N is the number of samples in a frame and k is the frame
index. The STE feature vector ŷk is computed by applying the 15th

root on yk: ŷk = [y
1/15
1,k , y

1/15
2,k , . . . , y

1/15
M,k ]

T , according to a com-
pression suggested in [6].

In the STE features extraction, as the STEs are first extracted
from the whole utterances then the feature vectors are computed
from these long-term envelopes every 10 ms, the feature coefficients
can be considered as a downsampling of the temporal envelopes in
the perceptual frequency bands. The variation of the feature coeffi-
cients over time reflects, to some extent, the shapes of the STEs in
the perceptual frequency bands which carry important temporal cues
for human speech recognition [22]. The shape of the STEs could
also preserve additional temporal context information.

4. CHIME-5 CORPUS

4.1. Recording scenario

CHiME-5 is the first large-scale corpus of real multi-speaker con-
versational speech recorded via commercially available multi-
microphone hardware in multiple homes [9]. Natural conversational
speech from a dinner party of 4 participants was recorded for tran-
scription. Each party was recorded with 6 distant Microsoft Kinect
microphone arrays and 4 binaural microphone pairs worn by the par-
ticipants. There are in total 20 different parties (sessions) recorded
in 20 real homes. This corpus was designed for the CHiME 2018
speech separation and recognition challenge [9].

Each party has a minimum duration of 2 hours which composes
of three phases, each corresponding to a different location: i) kitchen
- preparing the meal in the kitchen area; ii) dining - eating meal in
the dining area; iii) living - a post-dinner period in a separate living
room area. The participants can move naturally within the home in
different locations, but they should stay in each location for at least
30 minutes. There is no constraint on the topic of the conversations.
The conversational speech is thus spontaneous.

4.2. Audio and transcriptions

The audio of the parties was recorded with a set of six Microsoft
Kinect devices which were strategically placed to capture each con-
versation by at least two devices in each location. Each Kinect de-
vice has a linear array of 4 sample-synchronized microphones and a
camera. The audio was also recorded with the Soundman OKM II
Classic Studio binaural microphones worn by each participant [9].

Manual transcriptions were produced for all the recorded au-
dio. The start and end times and the word sequences of an utter-
ance produced by a speaker are manually obtained by listening to
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the speaker’s binaural recording. These information are used for the
same utterance recorded by other recording devices but the start and
end times are shifted by an amount that compensates for the asyn-
chonization between devices.

4.3. Data for training and test

Training, development and evaluation sets are created from the
20 parties. Data recorded from 16 parties are used for training.
The data used for training ASR systems combines both left and
right channels of the binaural microphone data and a subset of all
Kinect microphone data from 16 parties. In this paper, the total
amount of speech used in the training set is around 167 hours (the
data/train worn u200k set [9]). Each of the development and
evaluation sets is created from 2 parties of around 4.5 and 5.2 hours
of speech, respectively. The speakers in the training, development
and evaluation sets are not overlapped.

For the development and evaluation data, information about the
location of the speaker and the reference array are provided. The
reference array is chosen to be the one that is situated in the same
area. In this work, the results are reported for the single-array track
[9] where only the data recorded by the reference array is used for
recognition. The results in this paper are obtained on the devel-
opment set because the transcriptions of the evaluation set are not
publicly available at the time of this submission. Utterances having
overlapped speech are not excluded from the training and the devel-
opment sets.

5. DATA AUGMENTATION

Training data can be augmented to avoid over fitting and improve
the robustness of the models [16]. Generally, adding more training
data helps improving system’s performance. In this work, we ap-
ply the speed perturbation based data augmentation technique [16]
to increase the amount of training data of CHiME-5 corpus which
consists of both binaural microphone data and Kinect microphone
data (see section 4.3). The speed perturbation technique creates new
data by resampling the original data. Two additional copies of the
original training set are created by modifying the speed of speech
to 90% and 110% of the original rate. The whole training set af-
ter data augmentation is 3 times larger than the original training set.
The total amount of speech for training is around 501 hours. Due to
the change in the length of the signals after resampling, the start and
end times of the utterances are automatically updated by scaling the
original start and end times with the resampling rates.

6. SPEECH RECOGNITION SYSTEM

6.1. Front-end processing

Acoustic features are extracted from the training and development
data for training and testing of ASR systems. In the training set,
individual speech signals from each microphone in each Kinect
microphone array are used directly. In the development set us-
ing speech from the reference microphone array, speech signals
from four microphones in the microphone array is processed with
a weighted delay-and-sum beamformer (BeamformIt [23]) for en-
hancement prior to features extraction. In this paper, we do not use
the development set consisting of speech recorded with the binau-
ral microphones [9] as the focus is on the recognition of distant
conversational speech.

FBANK and STE features of 40 dimensions are extracted from
speech utterances which are obtained from the manual annotations
by human on the binaural microphone data. In this work, the

FBANK features are extracted in a conventional manner as follows:
speech signal is first pre-emphasized by using a filter having a trans-
fer function H[z] = 1− 0.97z−1. Speech frames of 25 ms are then
extracted every 10 ms and multiplied with Hamming windows. DFT
is used to transform speech frames into spectral domain. Sums of the
element-wise multiplication between the magnitude spectrum and
the Mel-scale filter-bank are computed. The FBANK coefficients
are obtained by taking logarithm of these sums. The STE features
are extracted using a filter-bank of M = 40 Gammatone filters (see
section 3).

The features are extracted from speech utterances which are lo-
cated in long audio sequences by using the provided start and end
times. Utterance-level mean normalization is then applied. Both
FBANK and STE features are augmented with 3-dimensional pitch
features which include the value of pitch, delta-pitch and the prob-
ability of voicing at each frame [24, 9]. In this work, the FBANK
and pitch features are extracted using the Kaldi speech recognition
toolkit [25].

6.2. End-to-end ASR architecture

Hybrid CTC/attention end-to-end ASR systems [3] are built using
the ESPnet toolkit [17]. The system architecture is depicted in Fig.
3. The architecture in this paper uses a shared encoder which con-
sists of the initial layers of the VGG net architecture (deep convo-
lutional neural network (CNN)) [26] followed by a 4-layer pyramid
bidirectional long short-term memory (BLSTM with subsampling)
[15], as in [27]. Here we use a 6-layer CNN architecture which con-
sists of two consecutive 2D convolutional layers followed by one
2D Max-pooling layer, then another two 2D convolutional layers
followed by one 2D max-pooling layer. The 2D filters used in the
convolutional layers have the same size of 3×3. The max-pooling
layers have patch of 3×3 and stride of 2×2. The 4-layer BLSTM
has 320 cells in each layer and direction, and linear projection is fol-
lowed by each BLSTM layer. The subsampling factor performed by
the pyramid BLSTM is 4 [27].

Fig. 3. Hybrid CTC/attention architecture [27, 3] of the end-to-end
ASR systems used in this paper.

In this paper, location-based attention mechanism [2] is used
in the hybrid CTC/attention architecture. This mechanism uses 10
centered convolution filters of width 100 to extract the convolutional
features. The decoder network is a 1-layer LSTM with 300 cells.
The hybrid CTC/attention architecture is trained within a multi-
objective training framework by combining CTC and attention-
based cross entropy to improve robustness and achieve fast con-
vergence [17]. The training is performed with 15 epochs using the
Chainer deep learning toolkit [28]. The CTC and attention-based
cross entropy have equal weights (0.5) when being combined.
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During joint decoding, CTC and attention-based scores are com-
bined in a one-pass beam search algorithm [17]. A RNN language
model (RNN-LM), which is a 1-layer LSTM, is trained on the tran-
scriptions of the training data. This RNN-LM is used in the joint
decoding where its log probability is combined with the CTC and
attention-based scores [17]. The weight of the RNN-LM’s log prob-
ability is set to 0.1 and the beam width is set to 20 during decoding.

6.3. System combination

As the training of hybrid CTC/attention end-to-end ASR systems
does not use alignment information, these systems are not able to
provide outputs with exact monotonic time-aligned information [3,
17]. System combination techniques, for instance lattice combina-
tion based on Bayes risk minimization [18] or ROVER (recognizer
output voting error reduction) [19], use time-aligned information
in the ASR outputs produced during the decoding to combine the
ASR outputs. Without time-aligned information, it is not straight-
forward to apply these techniques to combine attention-based end-
to-end ASR systems. In this paper, we propose a simple method to
combine the hypotheses produced by ASR systems using FBANK
and STE features. The method is described as follows.

Assume that we have two hypotheses produced by the end-to-
end ASR systems using FBANK and STE features, respectively, for
one speech utterance. From these two hypotheses, we will select the
one which has higher output decoding score ŝ. The decoding score
s(C) is defined as the weighted sum of the CTC score, the attention-
based score and the log probability of the RNN-LM [3, 17] given
a letter sequence C ∈ U where U is a set of distinct letters. The
output decoding score ŝ is computed based on the letter sequence
Ĉ which maximizes the decoding score over all possible letter se-
quences C ∈ U . The letter sequence Ĉ is also the hypothesis output
by the system. In short, ŝ = s(Ĉ) where Ĉ = argmaxC∈U{s(C)}.
The hypothesis selection method that we propose here is simple
compared to other hypothesis selection methods, for instance [29].
This simple system combination method, which is denoted as “Com-
bination” in the result tables (see section 7), is able to provide lower
WER than those of the individual ASR systems.

To know how far we can reduce the WER if we are able to select
the best hypothesis produced by the systems using FBANK and STE
features for each utterance, we select the one which produces lower
word error rate (WER) computed by using the manual transcription
of the utterance. It should be noted that the hypothesis selection per-
formed in this way is used only for reference because the transcrip-
tion is not known in real condition. This method will be denoted as
“Reference” in the result tables (see section 7).

7. EXPERIMENTAL RESULTS

Experimental results in terms of WERs are shown in Tables 1 and
2. The WERs for each session (party) in the development set and
room conditions are also shown. Table 1 shows the results of the
systems trained on the original training data set. In the present work,
the baseline end-to-end system using FBANK features has a WER of
90.1% on the development set. The WER of the baseline end-to-end
system introduced by the challenge organizers on the same develop-
ment set was 94.7% [9]. Using the same setup with the system using
FBANK features, the system using STE features provides 2.0% rela-
tive WER reduction compared to the system using FBANK features.
Combing the hypotheses produced by the systems using FBANK
and STE features using the proposed hypothesis selection method
(see section 6.3) provides 4.3% relative WER reduction compared
to the systems using FBANK features.

Table 1. Performance (WER, in %) of the ASR systems using
FBANK and STE features. Both FBANK and STE features are aug-
mented with pitch features. The systems are trained on the original
training set without data augmentation.

Features Session Kitchen Dining Living Overall
FBANK S02 96.2 94.1 89.6 90.1

S09 88.2 86.5 82.5
STE S02 96.1 89.1 87.0 88.3

S09 89.4 84.7 81.6
Combination S02 94.0 88.0 85.8 86.2

S09 83.8 82.0 77.9
Reference S02 92.3 86.6 82.9 84.1

S09 82.1 80.1 76.0

Table 2. Performance (WER, in %) of these ASR systems when
the original training set are augmented by using speed perturbation
based data augmentation technique.

Features Session Kitchen Dining Living Overall
FBANK S02 94.3 86.7 84.8 85.4

S09 83.8 80.3 76.1
STE S02 92.8 85.0 81.6 84.2

S09 82.9 82.0 77.6
Combination S02 91.2 83.0 79.9 81.4

S09 78.6 78.2 72.2
Reference S02 88.9 80.4 77.1 79.0

S09 77.1 75.3 70.3

Tab. 2 shows the WERs of the systems trained on the augmented
training set obtained with speed perturbation (see section 5). Data
augmentation provides 5.2% and 4.6% relative WER reductions for
the systems using FBANK and STE features, respectively, compared
to the respective systems trained on the original training data. The
system using STE features has 1.4% relative WER lower compared
to the system using FBANK feature. Combining the systems using
FBANK and STE features using the proposed hypothesis selection
method provides 4.7% relative WER reductions compared to the sys-
tem using FBANK features trained on the augmented training set.

It can be noticed from the results of the “Reference” method
that the WER could be further reduced if the hypotheses produced
by the systems using FBANK and STE features could be better com-
bined. Improving the performance of the proposed hypothesis selec-
tion method to achieve that of the “Reference” method is one direc-
tion for future work.

8. CONCLUSION

This paper investigated the use of STE features and speed perturba-
tion based data augmentation in end-to-end ASR of distant multi-
microphone conversational speech in everyday home environments.
A simple hypothesis selection method was proposed for combining
the end-to-end systems using FBANK and STE features. The inves-
tigated techniques helped improving end-to-end ASR performance
on a challenging corpus which was used for the CHiME 2018 speech
separation and recognition challenge [9]. STE features are extracted
with a different method and are complementary to FBANK features.
This complement is the source of up to 4.7% relative WER reduction
obtained when combining the ASR systems using these two features.
The accumulated relative WER reduction obtained by both data aug-
mentation and combining systems using the two features is 9.7%.
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