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ABSTRACT
Neural network based attention modeling has found utility

in areas such as visual analysis, speech recognition and more
recently speaker recognition. Attention represents a gating
(or weighting) function on information and governs how the
corresponding statistics are accumulated. In the context of
speaker recognition, attention can be incorporated as a frame
weighted mean of an information stream. These weights can
be made to sum to one (the standard approach) or be calculated
in other ways. If the weights can be made to represent event
observation probabilities, we can extend the approach to be
within a Bayesian framework. More specifically, we combine
prior information with the frame weighted statistics to produce
an adapted or posterior estimate of the mean. We evaluate the
proposed method on NIST data.

Index Terms— attention modeling, Bayesian statistics,
deep neural networks, speaker recognition

1. INTRODUCTION

Speaker recognition technology has greatly improved with
the advance of computational systems and the availability of
extensive speech resources. Neural networks are playing a sig-
nificant role and are continuing to be integrated into different
speech technologies, including speaker recognition.

Some of the earlier work in speaker recognition looked at
how neural networks could be used to train frame-level speaker
discriminant features using a neural network bottleneck struc-
ture [1]. More than a decade later, and with an increase in
available training data, research explored the use of a segment
level criterion [2]. Other work [3] investigated different con-
figurations of bottleneck features applied to both the language
and speaker identification tasks.

Over time, research also explored the training of end-to-
end systems. Salmon [4] investigated possibly the first mod-
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erately successful end-to-end neural network system. It in-
corporated an autoencoder to improve generalization and also
proposed the use of a mean and standard deviation based inter-
mediate layer within a siamese network structure to generate
low rank speaker embeddings. More recently, Snyder pub-
lished a state-of-the-art result [5, 6] for a shorter duration
(10-second) condition on the NIST 2010 speaker recognition
data set [7]. This system is similar to the work of Salman
but was trained using the cross-entropy training criterion for
N speaker classes and the generated speaker embedding was
later scored within a PLDA framework. For smaller data sets,
neural network training needs to be carefully constrained. In
contrast, for a larger data set (approx 80K speakers), it was
shown that an end-to-end neural network could be effectively
trained with fewer constraints [8].

Other work included the use of senone posteriors produced
by a neural network as a partitioning function for generating
senone conditioned i-vectors [9]. Interestingly, this represents
a gating mechanism across senones and it has similarities with
attention models in neural networks (for example see [10] in
the visual domain and [11, 12] as applied to speaker recog-
nition). Attention models basically represent a gating and
accumulation mechanism on information whether it be across
time or across nodes of a network layer. To date, attention mod-
els typically calculate a sample (or speech frame) weighted
mean of a particular input of interest. This can be seen as a
maximum-likelihood style estimate of the mean. In this work,
and in contrast, we propose the use of Bayesian statistics [13]
to provide an improved estimate of the weighted mean. By
adapting the work of Gauvain [14] we develop a statistics ac-
cumulation layer that (i) regresses to the prior mean when a
small sample mass is admitted through the gating mechanism
and (ii) adapts toward the mean of the weighted input data as
counts increase.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses the progression from maximum-likelihood
based statistics to include Bayesian statistics for attention mod-
eling. Section 3 describes the experimental setup and results
and Section 4 wraps up with the conclusion.
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2. BAYESIAN STATISTICS WITH ATTENTION
MODELING

In this section, we explore the use of a different intermediate
layer in the neural network; a (B)ayesian (AT)tention or BAT
layer. We discuss the basic attention layer approach and later
extend this with a Bayesian interpretation.

2.1. Frame-Weighted Mean Layer

The work proposed by Salman [4] and more recently by Sny-
der [5, 6] utilized an intermediate frame based averaging layer
to collect statistics over the period of a segment. The strength
of the approach is that information about the speaker is accu-
mulated in a stable manner over the duration of the segment or
recording. The drawback is that every speech frame is treated
to be equally informative across all network nodes in that layer.
The standard frame based average layer, at any time step t,
across observations x1, . . . , xt, may be indicated as follows:

µt =

∑t
i=1 xi
t

=

∑t
i=1 xi∑t
j=1 1

(1)

To remedy this issue, a frame weighted average can be
calculated. Two such examples in the literature include the
following [11, 12]. More specifically, for a single node, the
output µt of a node at time sample t, is given:

µt =

∑t
i=1 ηixi∑t
j=1 ηj

(2)

Here ηi is the frame/node importance. For standard atten-
tion models it is typically constrained to sum to one over a
speech segment. In this work, instead of constraining the sum
to one, we calculate ηi as the output of a sigmoid function
where bolded wT is the transpose of a weight vector1, xi is
the feature observation vector and b is its offset.

ηi =
1

1 + exp−(wTxi + b)
(3)

2.2. Frame-Weighted MAP Adaptation Layer

An important observation to note is that a weighted average
can be potentially unreliable if the accumulation of the frame
weights is small. We wish to have a layer that uses the frame
weighted mean if the importance accumulation is large. If
the importance accumulation is small then the system should
rely on prior information (or a default value). We can use
a Bayesian interpretation to achieve this. A version of this
(in a Maximum-A-Posteriori estimation or MAP sense) was

1The weight vector is part of a weight matrix used to produce the output
of an entire layer of nodes. This weight matrix can be formulated with fewer
parameters by representing the weight matrix W as UV T . Here, U and V
are two low rank rectangular matrices with a smaller dimension of 200 in our
experiments.

previously applied to Gaussian mixture models used in speech
recognition [14] and speaker recognition [15, 16, 17]. We will
use the formulation and apply it within the neural network
framework. The MAP and posterior mean estimates of the
mean are the same in this case and the result is denoted as
µadapt
t .

µadapt
t = αtµ

new
t + (1− αt)µ

old
t (4)

where
αt =

ct
ct +R

(5)

ct =

t∑
j=1

ηj (6)

µnew
t =

∑t
i=1 ηixi∑t
j=1 ηj

(7)

Note that R is the relevance factor relating to the prior
information.

By substituting the terms, this can be rewritten as:

µadapt
t =

∑t
i=1 ηixi +Rµold

t∑t
j=1 ηj +R

(8)

If the parameters R and µold
t are to be learned for each

node, this may be rewritten further using terms R1 and R2

instead. In summary, the frame weighted MAP adaptation
layer is given as follows:

µadapt
t =

∑t
i=1 ηixi +R1∑t
j=1 ηj +R2

where R2 > 0 (9)

On a per node basis, the parameters that need to be trained
by back-propagation are R1, R2, w (or U , V as per the foot-
note) and b. We note that extending the attention layer variant
(Equation 2) to include Bayesian statistics (Equation 9) in-
volves a relatively small increase in the number of parameters.
Note that if R1 and R2 are set to zero, the equation resolves
back to the original frame-weighted average calculation as
shown earlier. i.e. only the new evidence is utilized. If there
are no frames accumulated, the MAP adaptation resolves to
the ratio of R1 and R2.

For stability purposes, we perform gradient clipping and
we enforce R2 to be greater than some small positive value
(we use 10−4). As a result, we use the following equation in
our software implementation:

µ̂adapt
t =

∑t
i=1 ηixi +R1∑t

j=1 ηj + |R2|+ c
where c = 10−4 (10)
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3. EXPERIMENTS

3.1. System Overview

To evaluate our system, we use a deep neural network structure
as described by Snyder [5, 6] and adapt his implementation
provided in the Kaldi toolkit [18] to evaluate this work. The
network has 9 stacked layers with the first 5 layers calculating
statistics at the frame-based level and the remaining 4 layers
involving segment level statistics. The 5 layers of the frame-
based components are ReLU based layers. Each input of the
first 3 layers is formed by stacking nearby frames from the
output of the previous layer. The next two layers use the input
from the previous layers directly. The frame-based mean and
standard deviation statistics (each of dimension 1500) are then
calculated from the frames. These recording level statistics
feed into two intermediate 500-node ReLU layers (known in
Snyder’s paper as speaker embedding layers “a” and “b”) and
are finally passed through a linear layer followed by a softmax
layer to produce the speaker posteriors. The output from the
two intermediate layers is then separately processed using
LDA to reduce the dimensionality to 150. This is followed by
a PLDA scoring framework [19]. The resulting scores can be
combined as “a” + “b”.

For the purpose of contrasting the different systems, we
switch out the mean and standard deviation statistics layer for
other types of components. Here we explore 3 variations on a
particular layer. For simplicity of the Bayesian estimate in this
paper, we assess an intermediate layer that estimates frame-
based weighted posterior information for a concatenation of
xt and x2t statistics2. To compare with Snyder’s work [5, 6]
we include results using mean and standard deviation (identi-
fied as [Mean (x), SD (x)] in the experiments). However, we
consider our baseline system to be based on the mean of x and
x2 [Mean (x, x2)]. This can be extended into one form of self-
attention layer according to Equation 2 to perform neuron/node
specific frame-weighted averaging [ATT (x, x2)]. This com-
ponent is then modified to encompass prior information in the
form of Bayes with Attention [BAT (x, x2)].

3.2. Data Sets

Here we explored 2 categories of data for the training of a
system. The first we call the NIST related data. This is the
data that NIST [7] encourages its participants to use. The
training data consists of admissible audio from NIST 2005-
2010 and the LDC Switchboard data prior to 2010. This data
is composed of mostly English speech data recorded under
conversational telephony conditions. The second portion of
training data is a combination of NIST data and data extracted
from the OpenSLR corpus [20] and the VoxCeleb Corpus [21].

2For the interested reader, posterior statistics can also be determined for
standard-deviation/variance (see the relevant work in [14, 17, 13] for more
information).

Table 1. EER performance for four types of layers with train-
ing on the NIST related data.

Intermediate Layer a b a+b

Mean (x), SD (x) 11.0 8.3 7.8

Mean (x, x2) 10.4 9.3 8.2
ATT (x, x2) 9.2 8.9 8.0
BAT (x, x2) 8.6 7.9 7.5

The OpenSLR corpus is extracted from the LibriVox [22] web-
site where volunteers contribute their voice talent to produce
public domain audio books. The volunteers, known as Read-
ers, record themselves on various devices speaking sections of
books. The VoxCeleb Corpus [21] represents a collection of
YouTube audio speech segments spoken by different celebri-
ties. The majority of the celebrities chosen are from the United
States. The systems proposed are evaluated on the NIST 2010
10-second, 10-second condition which consists of a single side
of conversational telephony speech.

3.3. Results and Discussion

For the first set of NIST 2010 10second-10second experiments
we assess the utility of different frame accumulation layers
using standard NIST training data sets. These data sets con-
form to the NIST 2010 specification. Tables 1 and 2 show
the EER and MinDCF10 [7] performance measures for each
technique. The first result shows the performance numbers
when Snyder’s system (using a mean and standard deviation
statistics accumulation layer) is reevaluated. It achieves an
EER of 7.8% which is comparable to the result in Snyder’s
paper of 7.9% [5]. The next line represents the baseline system
which calculates the mean of a set of first and second order
statistics. The results suggest (compare 8.2% to 7.8%) that
this baseline may not be as strong as the mean and standard
deviation layer. However, it does provide a suitable baseline
for demonstrating the evolution of the improvements to the
model. The next row presents the results of the self attention
model. While it does improve the EER, the minDCF result is
inconsistent. The final row includes the results for the Bayes
with attention component. This approach shows improvement
across all EER values and in two of the three minDCF cases
(i.e. for cases, “b” and “a+b”).

There is a large effort to improve speaker recognition on
shorter recordings. One approach is to use better modeling
techniques and another is the utilization of additional speech
data. In this experiment we explore the intersection of the
modeling techniques discussed in this paper and the inclusion
of additional data sets for training. In particular we examine
the utility of including training data in addition to the standard
NIST data.

In Tables 3 and 4 we present the results of the same four
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Table 2. MinDCF10 performance for four types of layers with
training on the NIST related data.

Intermediate Layer a b a+b

Mean (x), SD (x) 0.94 0.88 0.88

Mean (x, x2) 0.96 0.99 0.96
ATT (x, x2) 0.96 0.97 0.97
BAT (x, x2) 0.99 0.93 0.90

Table 3. EER (%) performance for the training set config-
uration consisting of the NIST related data, OpenSLR and
VoxCeleb.

Intermediate Layer a b a+b

Mean (x), SD (x) 8.9 7.9 6.6

Mean (x, x2) 8.9 9.7 8.0
ATT (x, x2) 8.6 7.7 6.8
BAT (x, x2) 8.8 8.0 7.5

approaches now trained using the combination of three data
sets; NIST, OpenSLR and VoxCeleb. For the (x, x2) set of
approaches, the standard attention model does well across
multiple configurations. Interestingly, the BAT model obtains
the best single MinDCF result of 0.85, but the overall perfor-
mance on the mismatched training data is inconsistent and
needs further study.

4. CONCLUSION

In this paper we proposed and explored the use of a Bayesian
attention layer as a drop-in replacement for a frame average
or attention layer. This layer is similar to an attention layer
with the added flexibility of adapting to new information or
backing-off to prior information. Experiments on the NIST
2010 10-second condition suggest some promising initial re-
sults especially on the relatively matched training condition.
Opportunities for future work include (i) a better understand-
ing of the properties of the network layer under diverse train-
ing and evaluation conditions, (ii) exploring additional frame

Table 4. MinDCF10 performance for the training set config-
uration consisting of the NIST related data, OpenSLR and
VoxCeleb.

Intermediate Layer a b a+b

Mean (x), SD (x) 0.99 0.95 0.90

Mean (x, x2) 0.94 0.98 0.95
ATT (x, x2) 0.93 0.91 0.88
BAT (x, x2) 0.85 0.98 0.94

weighting types other than sigmoid and, (iii) evaluating poste-
rior statistics for standard deviation.
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