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ABSTRACT

In this work, we propose a new feature based on formants for whis-
pered speaker verification (SV) task, where neutral data is used for
enrollment and whispered recordings are used for test. Such a mis-
match between enrollment and test often degrades the performance
of whispered SV systems due to the difference in acoustic charac-
teristics of whispered and neutral speech. We hypothesize that the
proposed formant and formant gap (FoG) features are more invari-
ant to the modes of speech in capturing speaker specific information
compared to traditional baseline features for SV including mel fre-
quency cepstral coefficients (MFCC) and auditory-inspired ampli-
tude modulation features (AAMF). Whispered SV experiments with
714 speakers comprising 29232 neutral and 22932 whispered record-
ings reveal that the equal error rate (EER) using the proposed fea-
tures is lower than that using the best baseline features by ∼3.79%
(absolute). It was also observed that at least four whispered record-
ings during enrollment are required for the baseline features to per-
form at par with the proposed features. However, it was found that
the best performing baseline features yield an EER for neutral SV
task which is ∼1.88% higher than that using the proposed features.

Index Terms— whispered speech, speaker verification, for-
mants

1. INTRODUCTION

A speaker verification (SV) system is designed to verify whether a
given speech recording is from an enrolled speaker or not [1]. During
enrollment, a speaker registers himself/herself with a few of his/her
voice samples. In the test phase, the SV system needs to verify
whether the test voice sample matches with that of any of the en-
rolled speakers. Unlike in speaker recognition, where the goal is to
map a speech from an unknown speaker to the closest speaker from
a set of enrolled speakers, SV system has to reject if a test speech is
from an imposter [1].

While neutral speech is often used for SV purposes [2], there are
several applications where SV using whispered speech is of interest.
For example, using whispered speech, speakers often convey private
information like a password for a biometric system [3, 4]. In some
cases, criminals might whisper in a telephonic conversation to hide
from the forensic authorities. For some people whose vocal folds
are surgically removed, whispered speech is the only mode of com-
munication [5]. These bring up a need for developing an SV system
robust to whispered speech in addition to neutral speech.

There are several differences in the acoustics of neutral and
whispered speech. For example, there is no voicing in whispered
speech [4]. Low frequency formants in whispered speech are shifted
compared to those in neutral speech [6]. It is also shown that hyper-
articulation occurs while whispering to ensure intelligibility [7].
Despite these differences, previous works in the literature demon-
strated that whispered speech contains substantial information about

the content, and the speaker [4]. However, it remains a challenge
to improve SV system performance when it is enrolled with only
neutral speech but whispered speech is used during testing. This
is primarily due to the absence of pitch and shifts in the first two
formants [8, 6].

Extensive research has been done on the neutral speech based
SV, referred to as neutral SV in this work. Front-end factor analysis
(i-vector) [9] and Deep Neural Network (DNN) embedding [10, 11,
12] are considered to be the state-of-the-art neutral SV methods. Wu
et al. [2] provided a review of various neutral SV. Unlike neutral SV,
in whispered SV, enrollment is done using neutral and/or whispered
speech and only whispered speech is used during test. There are a
few attempts in the literature toward whispered SV. These methods
can be broadly classified into two categories. In the first category,
Gaussian Mixture Models (GMM) with features such as frequency
warping, instantaneous frequencies, modified temporal patterns, fea-
ture mapping [13, 3, 14, 15], modified Linear frequency cepstral co-
efficients [16] are used. In the second category, i-vectors front end
along with various features are used [9]. Sarria et al. [17] explored
mean Hilbert envelope coefficients, weighted instantaneous frequen-
cies based features for whispered SV. Sarria et al. also demonstrated
the need to include data from both whispered and neutral speech in
order to allow for an SV system to handle both neutral and whispered
speech effectively during test. He also demonstrated The importance
of a DNN based mapping from whispered speech features to neutral
speech features [18] and showed an improvement in whispered SV
performance. He also proposed auditory-inspired amplitude modu-
lation features (AAMF) [19] for whispered SV. Further, he explored
various fusion strategies of AAMF, spectral and bottleneck features
[20] to improve the whispered SV. Vestman et al. [21] provided a
survey of various whispered SV.

In this paper, we propose features based on formant and for-
mant gaps (FoGs) along with the front-end i-vector for whispered
SV. Formants based features have been used for a number of appli-
cations in the past including language recognition [22], accent de-
tection [23] and emotion recognition [24]. In addition, a number of
works on neutral SV in the past have also used formant based fea-
tures. Nolan and Grigoras [25] showed that the distributions of first
three formants within a speaker are similar and capture the speaker
information. Over time long-term formant features are shown to be
useful in SV [26]. Becker et al. used first three formants with front-
end GMM-Universal Background Model (GMM-UBM) for SV [27].
Most of the works on SV using formant features deal with neutral SV
[28, 29, 30]. Javier et al. [28] provided a review of formant based SV
methods. To the best of our knowledge, no formant based features
were proposed for whispered SV.

In whispering, speakers achieve articulatory targets more con-
sistently unlike that in neutral speech [31]. This has often been
attributed to the goal of preserving intelligibility in the absence of
pitch [7]. It could be that the way the articulation during whisper-
ing changes compared to that in neutral speech is speaker specific
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Database Num. of Speakers Recordings/speaker
Female Male Normal Whisper

TIMIT 192 438 10 -
wTIMIT 24 24 450 450
CHAINS 16 20 37 37

Table 1. Number of male/female speakers and recordings per
speaker for all three databases considered in this work.

[32]. This, in turn, could reflect in the formants extracted from the
acoustic signal. We also hypothesize that the shift in formant values
from neutral to whisper could vary from one formant to another and
considering gap between two consecutive formants could explicitly
capture cues about the way a speaker changes his/her articulation. In
fact, pitch (often used as identity of a speaker) has been estimated us-
ing formant gaps from whispered speech [4, 33]. In neutral speech,
it is shown that considerable correlation exists between the first two
formants and pitch because of source filter interaction [34]. Thus
formants and FoGs could be unique to an individual speaker and in-
variant to the modes of speech (neutral or whispered), which, in turn,
could capture the speaker’s identity well.

The SV performance using proposed formants and FoGs fea-
tures are examined using SV experiments comprising data from three
databases consisting of a total of 714 number of speakers. We con-
sider 29232 neutral speech recording and 22932 whispered record-
ings. When there is no whispered data in enrollment, we observe
that the Equal Error Rate (EER) using the proposed features is lower
than that using the best baseline features by ∼3.79% (absolute) in
whisper SV although the baseline features perform better than the
best performing proposed features by ∼1.88% (absolute) in neutral
SV.

2. DATABASE

In this study, we have considered 3 different databases: (i) CHAINS
[35] corpus contains 36 speakers, among them 28 are from the East-
ern part of Ireland and the remaining 8 speakers are from the UK
and the USA. The CHAINS data was recorded in six different condi-
tions, including Synchronous, Fast, whispered speech etc. However,
we have considered only neutral solo speech and whispered speech
of 10 recordings from each of 36 subjects recorded at 44.1kHz.
(ii) wTIMIT (whispered TIMIT) [36] is a large dataset comprising
20 Singaporean and 28 North American speakers, each speaking
450 recordings, both in neutral and whispered speech recorded at
44.1kHz. Although we have considered all recordings from 24
speakers and 10 recordings from each of the neutral and whispered
speech have been used from remaining 24 speakers. (iii) TIMIT
dataset [37] contains a total of 630 speakers from eight major dialect
regions of the United States speaking only 10 neutral speech record-
ings, which are recorded at 16kHz. Among all TIMIT speakers, we
have considered 562 speakers following the experimental setup of
the work by Sarria et al. [19]. The duration of a speech utterance,
when averaged over all three databases, is found to be∼4.5 seconds.
Details of the number of male and female speakers and recordings
per speaker are given in Table 1. We resampled all the recordings to
a sampling frequency (fs) of 16kHz.

3. SPEAKER VERIFICATION USING PROPOSED
FEATURE

Fig. 1 shows a typical SV system. It involves three stages com-
prising training, enrollment, and testing. Each stage involves feature
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Fig. 1. Block diagram of speaker verification system. Feature ex-
traction step is shown in red and i-vector step is shown in blue.

Fig. 2. KL divergence between neutral and whispered feature distri-
butions both within (red) and across (black) subjects using different
features, namely, MFCC, F , F1, F2. Gray shaded region indicates
1.5 times the standard deviation interval around the mean for the
across subject KL divergence.

extraction step followed by the front-end i-vector step. The num-
ber of whispered and neutral utterances used in the training step is
denoted by N t

w and N t
n. The number of whispered and neutral ut-

terances per speaker used in enrollment step is denoted by Ne
w and

Ne
n. The proposed feature extraction step and the i-vector step are

explained in detail below.

3.1. Proposed Formant Gap (FoG) features

To compute the proposed features, we divided the speech signal
into frames of window length Nw with a shift of Ns. For each
window, we computed five formants indicated by a vector of F =
[f1, f2, f3, f4, f5], where fi indicates the i-th formant. In this work,
we explored first (f1

i ) and second order (f2
i ) formant gaps defined

below:

f1
i = fi+1 − fi, 1 ≤ i ≤ 4 (1)

f2
i = f1

i+1 − f1
i , 1 ≤ i ≤ 3 (2)

Let F1 = {f1
i ; 1 ≤ i ≤ 4}, F2 = {f2

i ; 1 ≤ i ≤ 3}. Two types
of feature vectors are constructed using FoGs, namely, FoG1 =
[F,F1] and FoG2 = [F ,F1,F2].

Features that capture a speaker specific information and are in-
variant to the modes (whispered, neutral) of speech, would be ap-
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propriate for whispered SV, as the modes of speech in enrollment
and test are different in whispered SV. In order to understand the
difference between the distribution of the proposed features in whis-
pered and neutral speech, we conducted an illustrative experiment, in
which, we trained a speaker specific GMM for whispered and neutral
speech features separately. To compare the differences between the
distribution within and across speakers, we computed two kinds of
symmetric Kullback-Leibler (KL) divergence [38]. First, to measure
the difference between the whispered and neutral feature distribu-
tion within a speaker, we computed the KL divergence between i-th
speaker’s neutral GMM (Ni) and whispered GMM (Wi) denoted by
D(Ni|Wi). To measure the difference between the neutral GMM
and the whispered GMM across speakers, we computed the average
and standard deviation of KL divergence between the Ni and Wj 6=i

as follows:

MKL(i) =
1

N − 1

∑
j

D(Ni|Wj 6=i), (3)

σKL(i) =

√
1

N − 1

∑
j

(D(Ni|Wj 6=i)−MKL(i))2 (4)

where 1 ≤ i ≤ N and N is the number of speakers. We find the
set of speakers P as follows: P = {i : D(Ni|Wi) < MKL(i) −
1.5 × σKL(i)}. The cardinality of P (|P|) indicates the number of
speakers whose feature distribution in neutral speech is much closer
to that of their corresponding whispered speech compared to other
speakers’ whispered speech. For this illustrative experiment, we
have considered 60 speakers comprising 24 from WTIMIT and 36
from CHAINS corpora. The GMMs are trained with 10 sentences
from neutral and whispered speech for each speaker. Fig. 2 shows
the plot of MKL(i) with gray shaded area indicating 1.5 σKL inter-
val and D(Ni|Wi) for the proposed FoG features and MFCC. The
|P| for different features is mentioned on top of individual plots in
Fig. 2. Higher value of |P| would imply greater separation between
a speaker and every other speakers in the proposed feature space. It
is clear from Fig. 2 that formant based features achieve higher value
of |P| compared to that from MFCC suggesting that the proposed
formant and FoGs could capture speaker information irrespective of
the modes (whispered and neutral) of speech. It is interesting to ob-
serve that |P| using F2 is not significantly different from that using
F1. It could be that F2 does not carry speaker specific information
complementary to that using F1.

3.2. Front-end i-vector step

The i-vector extraction is a dimensionality reduction procedure us-
ing factor analysis [9]. In the i-vector training step, we considered
extracted features of dimension F to train a GMM-UBM with C
mixtures using the Expectation-Maximization algorithm [39], and
by concatenating all mixture means, a speaker and channel indepen-
dent super vector (m0) of dimension CF is obtained. Then each
speaker or channel dependent super vector (Ms) with dimension
CF is modeled as Ms = m0 + T · w. Here we train a tall and
low rank T (Total variability) matrix with dimension CF × d by
assuming that i-vector (w) follow standard normal distribution, as
explained in [40]. The T matrix is used to map a low dimensional i-
vector of dimension d to a high dimensional Ms. Using any speaker
dependent super vector Ms, m0 and T matrix we can compute i-
vector of the speaker, as explained in [9]. In the enrollment step, we
extracted i-vectors for each neutral and whisper speech recordings
in a similar way, and by taking an average of all these i-vectors of
a speaker we obtained one final i-vector for each speaker. During

Num. of Speakers/database Total Recordings
TIMIT wTIMIT CHAINS Ne. Wh.

UBM training 462 0 0 3696 0
T matrix training 462 24 0 9996 10800

LDA training 462 24 0 9996 10800
Enrollment 100 24 36 1280 480

Testing 0 24 36 120 120

Table 2. Number of speakers and the total number of recordings per
database for training, enrollment, and testing.

test, we first computed i-vector for test recording, then using linear
discriminant analysis (LDA) we reduced the dimension of i-vectors,
following which we computed cosine kernel distance between test
and enrolled i-vectors for making an SV decision.

4. EXPERIMENTAL SETUP

In the experimental stage, we divided recordings from all three
datasets into training and testing speakers. 462 speakers from the
TIMIT database which contains only neutral speech and 24 speakers
(both whispered and neutral speech) from the wTIMIT database
are selected for training. Details of train/test split of speakers and
number of recordings per speaker are provided in Table 2. In the
enrollment phase, we fixed eight neutral utterances per test speaker
and for the number of whispered utterances, we have considered two
cases. In the first case, we assume that no whispered utterances for
the test speakers are available (Ne

w = 0). In the second case, we
varied the number of whispered utterances used Ne

w ∈ {2, 4, 6, 8}.
In the test phase, we have two scenarios. In the first scenario, we
tested with two whispered utterances from each test speaker in both
the above cases. In the second scenario, we tested with two neutral
utterances from each speaker only in the first case (Ne

w = 0). The
sentences used in the test phase do not overlap with those used in the
enrollment phase. Below we describe the features and the evaluation
metric used in this work.

4.1. Features

In this sub-section, we explain the implementation details of the pro-
posed features. We also provide a detailed explanation of the three
baseline features considered. Our experiments use these features
along with the front end i-vector step for SV.

4.2.1 Proposed FoG features

We divided the speech signal into frames using a window dura-
tion of Nw(= 25ms) and shift of Ns(= 10ms). For each window,
five formants are extracted using an algorithm based on peak pick-
ing on differential phase spectrum, proposed by Baris Bozkurt et al.
[41]. Unlike the other algorithms, the algorithm in [41] has been
shown to estimate formants, in particular 4th formant, with high
precision. The formants are normalized by fs/4. The FoG features
from formants are extracted using eq. (1) and (2).

4.2.2 Baseline features

MFCC: MFCCs are widely used features in different speech ap-
plications. Speech signal, pre-emphasized with a filter coefficient
of 0.97 is used to obtain a 13-dimensional MFCC feature vector.
Features were computed over 25ms window with a shift of 10ms.
To add temporal dynamics to the feature vector, velocity and ac-
celeration coefficients were computed resulting in a 39-dimensional
feature vector [19].
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Auditory-inspired amplitude modulation features (AAMF):
AAMF features [19] assumed that the speech frame is a result
of multiplying a low frequency modulating signal by the high-
frequency carrier. Hence, the modulation spectrum encodes the rate
of change of long-term speech temporal envelopes. First speech
frames were transformed into magnitude squared of short-time
Fourier transform and frequency components were grouped to get
27 subbands according to the perceptual Mel-scale [42]. Each
subband time series was transformed into magnitude squared of
short-time Fourier transform and modulation frequency bins were
further grouped into eight subbands using logarithmically-spaced
triangular bandpass filters distributed over a range of 0.01-80 Hz
modulation frequency. This resulted in a feature dimension of
27 × 8 (216). Finally, logarithm of these features were computed.
The feature dimension was reduced to 40 using principal component
analysis [43].

Deep neural network(DNN) based feature mapping: We consid-
ered both MFCC and AAMF features of all training speakers whose
whispered and neutral speech for the same utterance was available.
We have used Dynamic time warping (DTW) to align whispered and
neutral speech. Following this, two DNNs were trained to perform
whispered to neutral speech feature mapping for MFCC and AAMF
[18]. In the testing phase, whispered features were transformed
using the DNNs before computing i-vectors. These transformed fea-
tures are denoted by MFCCDNN and AAMFDNN respectively.

4.2. Evaluation metrics

We use Equal error rate (EER) as an evaluation metric for SV, which
is the error rate of SV system when the false acceptance rate of the
imposter and the false rejection rate of enrolled speakers are equal
[44].

5. RESULTS AND DISCUSSION

Initially, we explored the importance of the different combinations
of proposed features. First three rows in Table 3 show a compari-
son of EER using three combinations of proposed features in zero
whispered enrollment condition. It is clear from the table that com-
bination of F and F1 features (FoG1) performs the best in the case
of whispered test condition and F performs the best in neutral test
conditions among proposed features. The EER using (FoG1) fea-
tures is lower than that using formant (F) features in whispered test
condition. This could be due to a shift in the first two formants in
whispered speech compared to the neutral speech, which is better
captured in formant gaps.

In the neutral test condition, the formant features achieve the
least EER compared to other proposed features. This could be due
to its capacity in separating speakers in the feature space which is
reflected in the observations made from Fig.2. We observe that
the EER for (FoG2) is greater than (FoG1), in both neural and
whispered test condition. This could be because F2 may not carry
speaker information complementary to those carried by F and F2

similar to the observations made in Figure. 2. It is also interesting
to observe that FoG1 increases the EER by 1.52 in the neutral SV
case compared to F unlike a drop of 9.42 in EER for whispered SV.
This could be because F features capture speaker specific informa-
tion better in neutral speech while FoG1 features capture speaker
information better irrespective of the modes (whisper and neutral) of
speech.

Table 3also show EER using baseline features for zero whisper
enrollment data in order to compare with those using the proposed
features. It is clear from the table that the feature mapping on the

Test condition
features whisper Neutral

proposed
F (5) 22.42 6.28

FoG1 (9) 13.00 7.8
FoG2 (12) 14.98 9.14

baseline

MFCC (39) 22.47 6.25
AAMF (40) 19.81 4.4

MFCCDNN (39) 17.01 -
AAMFDNN (40) 16.79 -

Table 3. Comparison of EER using the proposed features with base-
line features for both whispered and neutral test conditions with
Ne

w = 0. Numbers in bracket indicate the dimension of the feature
vector.

Ne
w 0 2 4 6 8

AAMFDNN 17.01 14.14 8.61 6.14 4.78
FoG1 13.00 10.82 9.68 8.88 8.66

Table 4. Comparison of EER using the proposed features with that
using best baseline features for different values of Ne

w in whisper
test condition.

baseline feature (MFCCDNN and AAMFDNN ) reduces the EER
compared to original counterparts (MFCC and AAMF) for the whis-
per test condition. It is also clear from the table that the proposed
feature performs better than all the baseline features in whisper test
condition. In particular, five dimensional F features yields an EER
similar to that using 39-dimensional MFCC features in both whis-
per and neutral test condition suggesting that the F features com-
pactly represent speaker specific information compared to MFCC.
This could is due to its better invariant nature from whispered to neu-
tral speech in the feature domain. The better performance of AAMF
in neutral test case is due to its better separation of speakers across
the different channels. One of the reasons for its poor performance
in whispered test condition could be due to its sensitivity towards
speaking rate, which varies significantly from whispered to neutral
speech.

Table 4 shows a comparison between the best baseline and the
FoG1 when the Ne

w is varied in whisper test condition. It is clear
from the table that the the SV using baseline features requires at least
four whisper recordings in the enrollment phase for it to perform
better than the proposed features. This, in turn, suggests that the
proposed features are robust to the modes (whisper and neutral) of
speech for SV applications.

6. CONCLUSION

In this paper, we proposed formants and formant-gaps (FoGs) feature
for whispered speaker verification. Experiments show that among
the proposed features, formants with 1st order formant gaps perform
better than other formant based features. We showed that the pro-
posed features perform 3.79% (absolute) better than the best baseline
in absence of whisper data in the enrollment stage. We also observed
that the proposed FoG feature performs better than the best baseline
feature, namely AAMF, when two or less whispered recordings are
available for enrollment in whisper speech test condition. However,
the performance of FoG features is slightly lower than AAMF fea-
tures in neutral test conditions. Further investigation is required on
large corpus, to improve the neutral SV performance using proposed
FoG features, also to explore different feature mapping methods for
FoG features.
Acknowledgement: We thank the Pratiksha Trust for their support.
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