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ABSTRACT 

 
The conventional speaker recognition frameworks (e.g., the i-

vector and CNN-based approach) have been successfully applied 

to various tasks when the channel of the enrolment dataset is 

similar to that of the test dataset. However, in real-world 

applications, mismatch always exists between these two datasets, 

which may severely deteriorate the recognition performance. 

Previously, a few channel compensation algorithms have been 

proposed, such as Linear Discriminant Analysis (LDA) and 

Probabilistic LDA. However, these methods always require the 

collections of different channels from a specific speaker, which 

is unrealistic to be satisfied in real scenarios. Inspired by domain 

adaptation, we propose a novel deep-learning based speaker 

recognition framework to learn the channel-invariant and 

speaker-discriminative speech representations via channel 

adversarial training. Specifically, we first employ a gradient 

reversal layer to remove variations across different channels. 

Then, the compressed information is projected into the same 

subspace by adversarial training. Experiments on test datasets 

with 54,133 speakers demonstrate that the proposed method is 

not only effective at alleviating the channel mismatch problem, 

but also outperforms state-of-the-art speaker recognition 

methods. Compared with the i-vector-based method and the 

CNN-based method, our proposed method achieves significant 

relative improvement of 44.7% and 22.6% respectively in terms 

of the Top1 recall.  

 
Index Terms— cross channel, speaker recognition, channel 

adversarial training 

 

1. INTRODUCTION 

 
With the popularity of smartphones and mobile devices, speaker 

recognition has attracted more and more attentions, as its non-

contact, low-cost and other advantages. Given the fact that 

personal speech is always stored and transmitted on different 

hardware and applications, a crucial issue need to address is 

cross-channel speaker recognition.  

Conventional frameworks of speaker recognition, such as i-

vector-based strategies, have been successful in the last decade 

                                                 
 Zhen-Hua Ling is the corresponding author. 

[1, 2]. They always assume that the enrolment and test dataset 

share the same distribution. Unfortunately, this assumption does 

not hold in many real-world applications because there is often 

channel mismatch between enrolment and test data. The channel 

mismatch significantly affects the speaker recognition 

performance. To address the mismatch challenge, several 

techniques have been developed and achieved state-of-the-art 

performance such as Linear Discriminant Analysis (LDA) [1], 

Probabilistic LDA (PLDA) [3] and so on. Channel compensation 

is regarded as a potential solution to mitigate the mismatch 

problem. It has attracted great interest of researchers in the field 

of speaker recognition due to its remarkable performance. 

The channel compensation methods for systems using i-vector 

back-ends have been the dominating paradigm of channel 

compensation. Recently, deep learning is becoming a 

mainstream technology for speech recognition [4]. Many efforts 

have been made using deep neural networks (DNNs) to 

compensate the channel mismatch for speaker recognition. 

Currently, the most promising approaches are end-to-end 

embedding architectures such as the deep speaker [5]. It has 

shown that Convolutional Neural Networks (CNNs) can achieve 

better performance than DNNs for integrated end-to-end 

architectures in text-independent speaker recognition scenarios 

[6, 7]. However, for a single speaker, it is difficult to collect 

training data from different channels. Therefore, the models are 

difficult to represent speaker information between different 

channels, which is one unsolved challenge in traditional channel 

compensation techniques. Inspired by unsupervised domain 

adaptation [8, 9, 10], we propose to learn the channel-invariant 

and speaker-discriminative speech representations via channel 

adversarial training (CAT) which only needs the labeled data 

under their respective channels. Moreover, unlike the 

unsupervised domain adaptive speaker recognition in the i-

vector space [9], we directly conduct channel adversarial 

training under the CNN-based speaker recognition framework to 

solve the problem of channel mismatch. We further compares 

the performance of our proposed CAT method with state-of-the-

art channel compensation methods. Experimental results on a 

large datasets with 54,133 speakers demonstrate that the 

proposed CAT method achieves the best performance. 
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2. MOTIVITION 
In the field of speaker recognition, the channel variability (i.e., 

mismatch between enrolment and test datasets) is one of the 

enduring challenges and is a major cause of errors. The 

variability arises from intrinsic factors (e.g., speaker 

characteristics) and extrinsic factors (e.g., how the speech is 

collected). For instance, the speech recorded by the software A 

is used for speaker enrolment, and the speech recorded by the 

software B is used for the speaker recognition. Generally, the 

speech codecs, also referred as channels, between different 

software tend to have large differences. The mismatch across 

channels can significantly degrade the speaker recognition 

performance. Typical channel compensation algorithms require 

a large amount of speech data to capture the information of the 

same speaker under different channels, especially when the 

inter-channel variability is large. However, it is unrealistic to 

collect cross channel data from a specific speaker in real and 

practical scenarios, which limits the utility of speaker 

recognition in many applications. Inspired by the work in 

domain adaptation, we design a robust speaker recognition 

framework which can well address the channel mismatch by 

adversarial training. By integrating this method, we expect that 

the speaker recognition technology can be practically applied in 

far more scenarios where we do not need to consider the 

difference across channels. 

 

3. BASELINE ARCHITECTURE 

 
3.1 I-vector and Modified Channel Compensation Methods 
 

The i-vector based framework was originally proposed by Dehak 

et al. [1] and has recently become a popular strategy for text-

independent speaker recognition [11]. It assumes that the 

speaker information can be modeled via the Gaussian Mixture 

Model (GMM) vectors. An efficient way to estimate the total-

variability subspace and the subsequent i-vector is described by 

Kenny et al. [12] and Dehak et al. [13]. More recently, a few 

standard channel compensation techniques have been explored, 

such as LDA and probabilistic PLDA to model the channel 

variability within the i-vector space [11,14]. 
 

3.2 Basic Convolutional Architecture 
 

The structure of the baseline CNN model includes five 

convolutional layers, which is same as the D1 module in Fig.1. 

For the input layer, 500 frames of 64-dimensional filter-bank 

features, which belong to the same person are grouped together 

as a feature map. Kernel size of each convolutional layer is 3x3, 

and the stride is set to be 1. Each convolutional layer is connected 

to pooling layer of 2x2 max pooling. Finally, the average pooling 

is used to get the speaker representation embedding, and the 

softmax loss as well as the triplet loss are employed for training. 
 

3.2.1 Loss Function 

The total loss is a combination of the softmax loss and the triplet 

loss [5]. The softmax loss is defined as:  

 

                              𝐿𝑠 = − ∑ log
𝑒𝑊𝑦𝑖

𝑇 𝑥𝑖+𝑏𝑦𝑖

∑ 𝑒𝑊𝑗
𝑇𝑥𝑖+𝑏𝑗𝑁

𝑗=1

M

i=1

 .                       (1) 

 

where 𝑥𝑖  denotes the i-th speaker embedding, belonging to the 

𝑦𝑖 speaker. 𝑊𝑗  denotes the j-th column of the weights matrix W 

in the last fully connected layer and 𝑏 is the bias term. The size 

of mini-batch and the number of speakers is M and N, 

respectively. The triplet loss is defined as: 

 

           𝐿𝑇 = ∑ max(0, 𝐷(𝑥𝑖 , 𝑥𝑛) + 𝛿 − 𝐷(𝑥𝑖 , 𝑥𝑝)) .              (2)

𝑀

𝑖=1

 

 

The triplet loss is calculated via triplet of training 

samples  (𝑥𝑖 , 𝑥𝑛 , 𝑥𝑝) , where (𝑥𝑖 , 𝑥𝑝)  have the same speaker 

labels and (𝑥𝑖 , 𝑥𝑛) have different speaker labels. 𝑥𝑖  is usually 

taken as an anchor of the triplet. Intuitively, the triplet loss 

encourages the model to find an embedding space where the 

distances between samples from the same speaker are smaller 

than those from different speaker by at least a margin 𝛿. 𝐷(∗,∗) 

represents the cosine distance between two input vectors. Finally, 

the softmax loss and the triplet loss are combined together with 

a weight α to construct the total loss, shown as, 

 

                                             𝐿 = 𝐿𝑠 + 𝛼𝐿𝑇 .                                      (3) 
  

3.2.2 Recognition 

Given the trained network, the utterance-level embedding of the 

enrolment and test utterances are extracted from the basic CNN 

model. Specifically, if the duration of an utterance is shorter than 

the duration of the input segments utilized at the training stage, 

we pad some frames to the short utterance. Otherwise, we divide 

the long utterance into multiple short segments by employing a 

sliding window without overlap. Then the utterance-level 

speaker embedding is obtained by performing averaging pooling 

followed by L2 normalization. After extracting the utterance-

level speaker embedding, cosine distance is adopted as the 

scoring method. 
 

4. CHANNEL ADVERSARIAL TRAINING  

 
We propose to project two different channels into a common 

subspace to eliminate the channel mismatch. This can be 

achieved by training a model that learns a speaker-discriminative 

and channel-invariant feature representation. Inspired by the 

basic convolutional network described in Section 3.2, we extend 

that idea and propose a novel CAT architecture, as shown in 

Figure 1. The CAT is different from the CNN model in two folds. 

First, we add a generator network which has two LSTM layers. 

Second, we add a discriminator to predict the channel label, 

denoted as 𝑑𝑖 ([0,1] or [1,0]) for the i-th sample, which indicates 

whether 𝑥𝑖  comes from channel A or channel B. This model can 

be decomposed into three parts to perform different mappings, 

including a feature extractor G, a speaker label predictor D1 and 

a channel predictor D2. More formally, the mapping functions 

can be expressed as 

 

                                         𝐺 =  𝑓𝐺(𝑥, 𝜃𝐺),                                        (4) 
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                                     𝐷1 =  𝑓𝐷1(𝑔, 𝜃𝐷1),                                     (5) 

 

                                     𝐷2 =  𝑓𝐷2(𝑔, 𝜃𝐷2),                                      (6) 

 

where 𝜃𝐺  , 𝜃𝐷1, 𝜃𝐷2 are the parameters of the network (in Figure 

1) . Our aim is to jointly train 𝜃𝐺, 𝜃𝐷1 and 𝜃𝐷2. Specifically, we 

want to optimize 𝜃𝐺  by minimizing the speaker label prediction 

loss and maximizing the channel classification loss at the same 

time, which can be realized by a gradient reversal layer. Gradient 

reversal layer between the feature extractor and channel label 

predictor is introduced to search the saddle point between 

speaker label classifier and channel classifier.  We multiply the 

gradients with β during the backpropagation, as shown in Eq. 

(11). β is a positive hyper parameter used to trade off the D1 loss 

and D2 loss in practice. Gradient reversal layer ensures the 

feature distributions over the two channels are similar so that we 

can get channel-invariant and speaker-discriminative features. 
 

4.1. Loss Function 
 

The total loss is a combination of the losses from D1 and D2. 

The D1 loss is defined as Eq. (3) in section 3.2.1, 

 

                                         𝐿𝐷1 = 𝐿𝑠 + 𝛼𝐿𝑇.                                      (7) 

 

The D2 loss is defined as, 

 

                         𝐿𝐷2 = − ∑ log
𝑒

𝑊𝑑𝑖
𝑇 𝑥𝑖+𝑏𝑑𝑖

∑ 𝑒𝑊𝑗
𝑇𝑥𝑖+𝑏𝑗𝐾

𝑗=1

M

i=1

,                           (8) 

 

where 𝑥𝑖  denotes the i-th speaker embedding, belonging to the 

yi speaker. 𝑊𝑗  denotes the j-th column of the weights W in the 

last fully connected layer and 𝑏 is the bias term. The size of 

minibatch and the number of channel is M and K. The overall 

CAT network is optimized via stochastic gradient descent (SGD) 

[15,16] approach. The optimal parameters are achieved through 

the following two equations,  
 

                  (𝜃𝐺 , 𝜃𝐷1) =  arg min
𝜃𝐺,𝜃𝐷1

𝐸(𝜃𝐺 , 𝜃𝐷1, 𝜃𝐷2),                      (9) 

 

                 (𝜃𝐷2) =  arg max
𝜃𝐷2

𝐸(𝜃𝐺 , 𝜃𝐷1, 𝜃𝐷2).                           (10) 

  

The optimization formulas can be written as 

 

                    𝜃𝐺 = 𝜃𝐺 − 𝑙 ∗ (
𝜕𝐿𝐷1

𝜕𝜃𝐺

− 𝛽 ∗
𝜕𝐿𝐷2

𝜕𝜃𝐺

),                       (11) 

 

                             𝜃𝐷1 = 𝜃𝐷1 − 𝑙 ∗ (
𝜕𝐿𝐷1

𝜕𝜃𝐷1

),                                (12) 

 

                             𝜃𝐷2 = 𝜃𝐷2 − 𝑙 ∗ (
𝜕𝐿𝐷2

𝜕𝜃𝐷2

).                                (13) 

 

After model training, we can extract channel-invariant and 

speaker-discriminative features extracted from the neural 

network. 

 

5. EXPERIMENTS 
 

5.1. Speech Data 
 

Experiments were performed on a large collection of speakers 

from four homemade sessions in iFlytek Co., Ltd. 
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Figure 1: Architecture of channel adversarial training model. 

 
Training Set1: The codec used in this dataset is Speex [17], 

which is a patent-free audio compression format designed for 

speech. Speex is a common way for speech codec. This set 

includes 37,557 speakers, each speaker has 60 utterances on 

average. Utterance duration is 8 seconds on average. 

Training Set2: The codec used in this dataset is SILK [18], 

which is also a patent-free audio compression format. This set 

includes 38,046 speakers, each speaker has 30 utterances on 

average. Utterance duration is 12 seconds on average. 

Development Set: All utterances from the other 22 speakers 

were used as validation set for adjusting the parameters. For 

each speaker, one utterance was sampled by SILK codec as the 

enrolment data. Besides, we collected the other 25 speech by 

Speex codec as the cross-channel test data. This resulted in 550 

target trials and 11,550 impostor trials in total. 
Test Set: All of the utterances from the other 54,133 speakers 

were used as the test set for evaluating the systems’ performance. 

For each speaker, 10 utterances were sampled by SILK codec as 

the enrolment data. We further sampled 246 utterances by Speex 

codec from 100 speakers included in the enrolled 54,133 
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speakers as the cross-channel test data. This resulted in 246 

target trials and 13,316,472 impostor trials in total. 

 

5.2. Evaluation Metrics 

 

Because the test set was too large and the number of test data 

was tens of millions, we performed a cross-channel speaker 

recognition task on a smaller development set to adjust the 

parameters. The Equal Error Rate (EER), which corresponds to 

the threshold where the probability of miss-classifying positive 

samples is same as that for negative samples, was used to 

evaluate the performance in the development set. We further 

verified the performance of speaker recognition task on a large-

scale test data. The performance index used for the test set was 

TopN recall rate. Supposing we need to judge which speaker the 

given speech belong to among the S speakers, the test speech is 

compared with the S speakers. If the targeted speaker exists 

among the most similar N speakers, we can consider it as a 

successful recall. The TopN recall rate can be calculated as 

follows, 

 

TopN recall =
the number of successful recall speeches

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑝𝑒𝑒𝑐ℎ𝑒𝑠
.          (14) 

 

5.3. Model training 

 

The i-vector extractor was trained by training set1 and training 

set2. It was based on a UBM with 512 Gaussian mixtures and a 

gender-independent total variability matrix with 300 total factors. 

We employed within-class covariance normalization (WCCN) 

[19] and i-vector length normalization (LN) [20] to the 300-

dimensional i-vector. Then the LDA and WCCN were used to 

further alleviate intra-speaker variability and reduce the 

dimension to 200. Finally, PLDA models with 150 latent identity 

factors were trained.  

The basic convolutional neural network and the proposed 

channel adversarial training method were trained by training set1 

and training set2. We employed the SGD [16, 17] optimizer with 

an initial learning rate of 0.2 for all network components. The 

learning rate was decayed based on the performance on the 

development set. To accelerating the training process, batch 

normalization and dropout were employed during the training 

process. The batch size was set to 64 and the value of α in Eq. 

(3) was set to 1.  

 

5.4. The effect of β in CAT 

 

We investigated the impact of the hyper-parameters β, which 

was used to achieve a tradeoff between two sub-losses, on the 

performance of the proposed CAT method. The impact of β on 

EER on development set and Top1 recall on test set are depicted 

in Fig. 2. The lowest EER and the highest Top1 recall were 

achieved when β was set to be 1.  

 

5.5 Performance comparison between different methods 

 

The experimental results are shown in Table 1. The CAT without 

D2 represents the channel adversarial training system without 

channel classification. The purpose of CAT without D2 is to 

ensure that its model complexity is completely comparable to 

system CAT without using the channel adversarial training 

method. 

 

 
Figure 2: The EER and Top1 recall of CAT as a function of β 

 

Table 1. The EER (%) of CAT and state-of-the-art methods 

on the development set. 

System i-vector CNN 
CAT 

without D2 
CAT 

EER(%) 8.8 6.2 6.4 5.8 

 

Comparing CNN with CAT without D2, it can be seen from 

Table 1 that only adding the feature extraction generator G 

cannot improve the performance. This further demonstrates the 

effectiveness of the proposed method. 

 

Table 2.  The TopN recall rates (%) of CAT and state-of-the-

art methods on the test set. 

System Top1 Top5 Top10 

i-vector 57.3 66.3 70.3 

CNN 69.5 77.6 80.1 

CAT without D2 69.1 78.0 80.1 

CAT 76.4 83.3 85.0 

 

As can be seen from Table 2, by projecting the data to a 

common space using the proposed CAT approach, we achieved 

22.6% relative improvement (absolute improvement 6.9%) over 

the CNN baseline system on Top1 recall. The result on the test 

set was consistent with that on the development dataset, which 

further shows the robustness of the proposed CAT strategy. 

 

6. CONCLUSIONS 

 
In this paper, we propose a cross-channel speaker recognition 

approach based on channel adversarial training, which alleviates 

the channel mismatch problem by projecting the data of two 

channels into the same subspace. Through this strategy, we can 

obtain channel-invariant and speaker-discriminative speech 

representations. Experiments on a large test dataset show that, 

the proposed approach improves the Top1 recall rate from 69.5% 

to 76.4%, with 22.6% relative improvement. In the future, we 

will explore the CAT method on the datasets with more than two 

channels. 
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