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ABSTRACT 

 

In this paper we propose speaker characterization using time 

delay neural networks and long short-term memory neural 

networks (TDNN-LSTM) speaker embedding. Three types 

of front-end feature extraction are investigated to find good 

features for speaker embedding. Three kinds of data 

augmentation are used to increase the amount and diversity 

of the training data. The proposed methods are evaluated 

with the National Institute of Standards and Technology 

(NIST) speaker recognition evaluation (SRE) tasks. 

Experimental results show that the proposed methods 

achieve a decision cost of 0.400 with the pooled SRE 2018 

development set with a single system. In addition, by 

applying simple average score combination on the outputs 

of 12 systems, the proposed methods achieve an equal error 

rate (EER) of 5.56% and a minimum decision cost function 

of 0.423 with the SRE 2016 evaluation set. 

 

Index Terms— speaker embedding, TDNN-LSTM, NIST 

SRE2018 

 

1. INTRODUCTION 
 

The embedding-based speaker recognition systems recently 

demonstrate sound performance and they become the 

mainstream methods. The idea of speaker embedding is to 

find representation for speaker idiosyncrasy, which can be 

extracted for both enrollment data and test utterance, and 

then used to make decision regarding true speaker or 

imposter [1]-[4]. 

A speaker embedding method based on deep neural 

network (DNN) has been proposed in 2016 [5]. The 

proposed architecture was a feed-forward DNN and it 

outperformed the conventional i-vector. Snyder et al. 

investigated replacing i-vectors for text-independent speaker 

verification with embedding extracted from a feed-forward 

deep neural network [6]. The long-term speaker 

characteristic can be captured in the network by a temporal 

pooling layer that aggregates over the input speech. In 

addition to feed-forward neural networks, the convolutional 

neural networks (CNN) based speaker recognition was 

proposed in 2017, and they were experimented with a large-

scale speaker recognition dataset called VoxCeleb [7, 8]. 

The VoxCeleb dataset is collected from Youtube with 16 

kHz and in 16-bit format wideband speech. In 2018, data 

augmentation was used to improve the performance of DNN 

embedding for speaker recognition, and variable-length 

utterances are converted to fixed-dimensional embedding 

vectors, called X-vectors [9], which were trained to 

discriminate between speakers. X-vectors are based on the 

time-delayed neural network (TDNN) structure [10]. A self-

attention pooling layer was proposed to replace the temporal 

average pooling layer in X-vectors for text-independent 

speaker verification [11]. The idea is to compute the speaker 

embedding as a weighted average of a speaker’s frame-level 

hidden vectors, and their weights are automatically 

determined by an attention mechanism. 

In this paper, we propose a speaker-embedding model 

called L-vectors based on TDNN and long short-term 

memory (LSTM) recurrent neural networks (RNN). The 

motivation of using both TDNN and LSTM in L-vectors is 

to better capture the temporal information in speech than 

using TDNN alone as in X-vectors. We investigate three 

types of front-end feature extraction to analyze speech from 

different signal aspects. In addition, three kinds of data 

augmentation are used to increase the amount and diversity 

of the available training data.  

The rest of this paper is organized as follows. In Section 

2, we introduce the proposed L-vectors methods based on 

TDNN and LSTM. In Section 3, we present the 

experimental results on NIST-SRE tasks. In Section 4, we 

summarize this work and draw conclusion. 

 

2. THE PROPOSED SYSTEM 
 

2.1. Speaker-Embedding L-vectors  
 

We modify the original TDNN-based X-vector by replacing 

two TDNN layers (the second and third hidden layers in X-

vectors [6]) with an LSTM layer, so the proposed 

embedding based speaker recognition system is based on 

TDNN-LSTM as shown in Fig. 1. We refer to this 

representation as L-vector. The first 4 hidden layers operate 

at frame-level, while the last 2 layers operate at segment-

level. There is a statistics pooling layer between the frame-

level and the segment-level layers that aggregates all frame-

level outputs from the 4th layer and computes the mean and 
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standard deviation over all frames for an input segment. 

After training, speaker-embedding L-vectors are extracted 

from the 512 dimensional affine components of the 5th and 

6th layers, i.e. the first and second segment-level layers. The 

same data is used to train the speaker-embedding X-vectors 

with the default X-vector neural network setting [9]. After 

training, speaker-embedding X-vectors are extracted from 

the 512 dimensional affine components of the 6th and 7th 

layers, i.e. the first and second segment-level layers. 

The proposed speaker-embedding L-vectors are trained 

on Fisher, Mixer6, NIST-SRE, Switchboard (SWBD) and 

VoxCeleb. Mixer6 and VoxCeleb are microphone speech. 

Fisher, NIST-SRE and SWBD are telephone speech. Fisher 

dataset, with parts 1 and 2, contains 23,392 utterances from 

12,399 speakers, so the average number of utterances per 

speaker is 1.89. Mixer6 dataset contains telephone speech of 

8,809 utterances from 591 speakers, and microphone speech 

of 3,423 utterances from 547 speakers, respectively. The 

average number of utterances per speaker is 14.91 for 

telephone speech and 6.26 for microphone speech, 

respectively. The NIST-SRE dataset, consisting of SRE 

2004, 2005, 2006, 2008, and 2010, contains 50,850 

utterances from 4,263 speakers. The average number of 

utterances per speaker is 11.93. There are 28,181 utterances 

from 2,594 speakers in the SWBD dataset (with phase 1, 

phase 2, phase 3, cellular part 1, and cellular part 2). The 

average number of utterances per speaker is 10.86. There 

are 1,245,525 utterances from 7,245 speakers in the 

VoxCeleb dataset (containing VoxCeleb1 and VoxCeleb2). 

The average number of utterances per speaker is 171.92. 

The training datasets for the proposed speaker-embedding 

L-vectors are summarized in Table 1. In total, there are 

approximately 1,360,000 utterances from 26,600 speakers in 

the training data. We keep the original format of all the 

audio samples. All the audio samples are down-sampled to 8 

kHz and in 16-bit format for feature extraction.  

 

2.2. Feature Analysis 
 

Three acoustic feature sets are extracted from audio files, 

including the Mel-frequency cepstral coefficients (MFCCs), 

perceptual linear predictive (PLP) analysis of speech, and 

the linear mel-scale filter-bank energies with pitch (FBP). 

MFCCs are computed using 24 Mel filter banks. The PLP 

analysis computes 18-order PLP-cepstra. FBP is estimated 

using 36 mel-scale filter-bank energies. The audio samples 

are coded with a 25-ms frame window, a 10-ms frame shift, 

and bandwidth is limited to the range of 100 Hz - 3,700 Hz 

[12, 13]. We apply three different front-end feature 

extraction of MFCC, PLP, and FBP to train embedding 

models. After doing feature extraction, energy-based voice 

activity detection (VAD) is used to estimate frame-by-frame 

speech activity, and the frames with silence or low signal-to-

noise ratio in the audio samples are removed. 

 

2.3. Data Augmentation 
 

Data augmentation is often used to increase the amount and 

diversity of the available training data [14]. Three kinds of 

data augmentation methods are applied in this work to 

create a 6 copies of original data (feature vectors). 

 

2.3.1 Adding babble, noise, and music 

 

We use the MUSAN dataset [15] to corrupt the original 

audio files with additive noises, including babble noise, 

general noise, and music noise, resulting in 3-fold data 

augmentation. 

Table 1. Summarization of the training data for the 

proposed speaker-embedding L-vectors. 

Dataset Utterance Speaker 

Fisher 23,392 12,399 

Mixer6 12,232 591 

SRE 50,850 4,263 

SWBD 28,181 2,594 

VoxCeleb 1,245,525 7,245 

 

 
Fig. 1. Diagrams of TDNN for X-vectors and TDNN-

LSTM for L-vectors. Speaker-embedding X-vectors and 

L-vectors are the first and second segment-level layers 

after the statistics-pooling layer. The statistics-pooling 

layer is used to estimate the mean and standard 

deviation from the variable-length inputs. 
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2.3.2 Adding simulated room impulse responses  

 

We apply the simulated room impulse responses (RIRs) [9] 

to corrupt the original audio by convolving with simulated 

RIRs. The simulated room impulse responses include small 

and medium room size. The ranges from which the width 

and length of a room are uniformly sampled are 1m-10m 

and 10m-30m, respectively.  

 

2.3.3 Speed perturbation 

 

Speed perturbation method is applied to create two copies of 

the original signal with speed factors of 0.9 and 1.1 [16]. 

The speed function of the SoX toolkit [17] is used to modify 

the speed to 90% and 110% of the original rate.  

 

Augmenting the original audio with the corrupted copies 

produces 441,357 utterances for SRE and Mixer6 datasets, 

197,267 utterances for the SWBD dataset, 163,744 

utterances for the Fisher dataset, and 8,718,675 utterances 

for the VoxCeleb dataset. After data augmentation, there are 

approximately 9,521,000 utterances available for training. 

To process such a large amount of data, we throw away the 

speakers with fewer than 8 utterances and remove features 

that are too short after removing silence frames. We require 

at least 400 frames per utterance for training. For speaker-

embedding L-vector extraction, a neural network of 6 

hidden layers with rectified linear unit (ReLU) non-linearity 

is trained to discriminate over 27,000 speakers in the 

training set with over 9,000,000 segments.  

 

3. EXPERIMENTS 
 

The proposed L-vectors are evaluated with NIST SRE 2016 

and 2018 speaker detection tasks. In speaker detection, it is 

reasonable to assume the target ratio to be small. In 

verification, the target ratio is often high. In detection, the 

target ratio is often much smaller. The performance metrics 

are the equal error rate (EER) and the minimum of the 

detection cost function (DCF) at the target ratio of 0.01 and 

0.005, per the standard in the NIST-SRE 2016 and 2018 

evaluation plan. 

A classifier based on probabilistic linear discriminative 

analysis (PLDA) is used for L-vector and X-vector systems. 

The L-vectors and X-vectors are centered, and then 

projected to 150 dimensionality using LDA. The LDA and 

PLDA are trained using the SRE data with data 

augmentation. In addition, the length normalization and 

PLDA are applied to L-vectors and X-vectors. Both L-

Table 2. EER and DCF results of the SRE 2018 development set. Pooled means the average of CMN2 and VAST. 

 

L-vector TDNN 5 L-vector TDNN 6 X-vector TDNN 6 X-vector TDNN 7 

EER min_DCF act_DCF EER min_DCF act_DCF EER min_DCF act_DCF EER min_DCF act_DCF 

MFCC 

CMN2 6.91 0.441 0.446 8.13 0.433 0.442 7.58 0.434 0.453 7.54 0.404 0.413 

VAST 3.70 0.416 0.490 5.35 0.486 0.523 5.35 0.333 0.519 4.12 0.296 0.444 

Pooled  0.468  0.482  0.486  0.429 

PLP 

CMN2 6.98 0.424 0.435 8.55 0.444 0.448 7.31 0.430 0.437 7.93 0.415 0.427 

VAST 3.70 0.267 0.407 7.41 0.337 0.407 7.41 0.412 0.481 7.41 0.412 0.486 

Pooled  0.421  0.428  0.459  0.456 

FBP 

CMN2 6.77 0.412 0.429 8.86 0.422 0.431 7.06 0.402 0.409 8.06 0.377 0.384 

VAST 3.70 0.296 0.370 7.41 0.300 0.444 7.41 0.379 0.416 7.41 0.300 0.481 

Pooled  0.400  0.438  0.412  0.433 

 

Table 3. EER and DCF results of the SRE 2016 evaluation set.  

 

L-vector TDNN 5 L-vector TDNN 6 X-vector TDNN 6 X-vector TDNN 7 

EER min_DCF EER min_DCF EER min_DCF EER min_DCF 

MFCC 7.03 0.519 7.93 0.519 7.46 0.537 7.71 0.541 

PLP 7.42 0.532 8.19 0.532 7.45 0.544 8.13 0.534 

FBP 6.99 0.520 7.95 0.511 7.14 0.519 7.65 0.505 
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vector and X-vector were implemented using the open-

source Kaldi Speech Recognition Toolkit [18]. 

 

3.1. NIST SRE 2018 
 

In NIST SRE 2018 [19], two types of training conditions, 

fixed and open, are defined with different restriction of 

data/resources usage. We focus on the fixed condition tasks 

in this work. Most of the training data are English. However, 

the main part of the 2018 speaker recognition evaluation 

data is the Call My Net 2 (CMN2) spoken in Tunisian 

Arabic. The other part of evaluation data, Video Annotation 

for Speech Technology (VAST), is extracted from YouTube 

videos and spoken in English. Results of the SRE 2018 are 

shown in Table 2. The best result was boldface. In total, we 

have 12 system results by using MFCC, PLP and FBP 

features combined with the first and second segment-level 

layers of speaker-embedding neural networks for L-vectors 

or X-vectors. We can see that the proposed L-vector with 

FBP feature achieves the best actual DCF of 0.400. 

The CMN2 part of SRE 2018 is in Arabic. Because the 

training data is essentially all in English, the English 

(speaker) PLDA can be treated as out-of-domain PLDA. 

The SRE 2018 unlabeled data is used to adapt the out-of-

domain PLDA. The adapted PLDA can be treated as Arabic 

(speaker) PLDA, because the SRE 2018 unlabeled data is 

Arabic. Since there is no VAST in the SRE 2018 unlabeled 

data, we do not adapt PLDA in the VAST part of SRE 2018. 

The VAST audio data in SRE 2018 is in English, with 

44.1 kHz and in 16-bit format. Most of the available training 

data on SRE 2018 fixed condition are 8 kHz narrow-band 

speech data. For speaker detection on VAST data, we train 

16 kHz L-vector and X-vector systems in addition to 8 kHz 

systems. The VAST data is down-sampled to 16 kHz. The 

SRE data is up-sampled to 16 kHz and combined with 16 

kHz VoxCeleb to build speaker-embedding systems based 

on 16 kHz data. Based on 16 kHz and 8 kHz systems, we 

apply the average score combination of PLDA classifiers to 

generate the VAST results.  
We apply 10-fold cross-validation to the CMN2 part of 

SRE 2018 development data for fusion parameters. On the 

CMN2 part (2,063,007 trials) of SRE 2018 evaluation data, 

the system achieves minimum DCF of 0.392 and actual 

DCF of 0.393. 

 

3.2. NIST SRE 2016 
 

Results of the SRE 2016 evaluation set [20] are shown in 

Table 3. We can see that FBP is consistently the best feature 

compared with MFCC and PLP. The proposed L-vector 

with FBP feature achieves the lowest EER of 6.99%. The X-

vector achieves the lowest minimum DCF of 0.505.  

The default X-vectors [9] are extracted at TDNN layer 6 

which is comparable to the proposed L-vectors of TDNN 

layer 5. In Table 2 and Table 3, we found the proposed L-

vectors are better than the X-vectors in both EER and DCF. 

In addition, Snyder et al. suggested [6] the combined 

embedding of the first and second segment-level layers is 

better than the first or second segment-level layers. To keep 

the variation and achieve the better result, we simply applied 

the average score combination on both 5th and 6th layers 

speaker embedding of L-vectors, and 6th and 7th layers 

speaker embedding of X-vectors to evaluate NIST SRE 

2016. We obtain an EER of 5.56% and minimum DCF of 

0.423 in NIST SRE 2016 evaluation set by using the 

average score fusion. 

 

3.2. Computational Resources 
 

The experiments in this work have been implemented with 

machines equipped with Intel i7-8700 CPU with 32GB 

DDR4-2666 RAM and GeForce GTX 1080 Ti. For 

representation learning, it takes approximately two weeks to 

finish training L-vector or X-vector speaker-embedding 

models. For inference, a randomly selected trial with 132-

second enrollment data and 84-second test segment takes a 

single system 32.85 seconds to process, including audio 

feature generation, speaker-embedding L-vector or X-vector 

extraction, and LDA and PLDA scoring.  

 

4. CONCLUSION 
 

In this study, we propose a speaker-embedding model called 

L-vector based on TDNN-LSTM neural networks. We 

investigate the MFCC, PLP, and FBP front-end features, 

with FBP showing the best performance. We use training 

datasets (Fisher + Mixer6 + SRE + SWBD + VoxCeleb) and 

apply three data augmentation methods to increase the 

amount and diversity of available training data, including 

noise addition, convolution, and speed perturbation. We 

evaluate the proposed L-vectors with NIST SRE 2016 and 

SRE 2018 speaker detection tasks. The best single system is 

the proposed L-vector with FBP features, achieving an 

actual DCF of 0.400 in the NIST SRE 2018 development 

set. We adopt the average score combination of 8 kHz and 

16 kHz models for the 44.1 kHz YouTube speech of VAST. 

We use the average score combination of out-of-domain 

PLDA and in-domain adapted PLDA models to recognize 

the Arabic speech of CMN2. By using the average score 

combination of 12 systems (including L-vectors and X-

vectors), we achieve an EER of 5.56% and a minimum DCF 

of 0.423 in NIST SRE 2016 evaluation set. 
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