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ABSTRACT

It is well known that domain mismatch between the training
and evaluation data hinders the performance of any machine
learning system. Various factors contribute to domain mis-
match. In speaker recognition systems, it mainly occurs due
to the mismatch in recording conditions and language. Most
speaker recognition corpora are telephone speech. Mean-
while, a few evaluation data sets like Speakers In The Wild
(SITW) are microphone speech. In this work, we explore do-
main adaptation at acoustic feature level by learning feature
mappings between domains using cycle consistent genera-
tive adversarial networks (cycle-GANs), without any parallel
data between domains. Microphone features mapped to
telephone domain are used to evaluate speaker recognition
system trained only on telephone data. We achieved 9.37%
and 2.82% relative improvement in equal error rate (EER)
and detection cost function (DCF) on SITW eval set.

Index Terms— Unsupervised domain adaptation, speaker
recognition, cycle-GANs, generative adversarial neural net-
works (GANs)

1. INTRODUCTION

NIST speaker recognition evaluations have mainly driven
speaker recognition research in the past few years. Because
of the target application of these evaluations, most data avail-
able to train speaker recognition systems is telephone speech.
The growing interest to apply speaker recognition to micro-
phone speech has promoted the emergence of new databases
like Speakers In The Wild (SITW) [1]. This implies a new
challenge for speaker recognition trained on telephone speech
because of the mismatch between the train and evaluation
domains. The authors in [2] approached this problem by aug-
menting the telephone data with microphone speech from the
VoxCeleb dataset [3] and obtained a significant improvement
on SITW. However, this approach requires access to labelled
in domain data sets, a time consuming and an expensive
approach. On the other hand, getting access to unlabelled
microphone speech is relatively easy.

In this work, we assumed we have access to unlabelled
nonparallel microphone speech data for adaptation. We lever-

aged unlabelled microphone data along with the telephone
data, used to train speaker recognition systems, to learn fea-
ture mappings between microphone and telephone domains.
Following that, we mapped the microphone speech features–
from SITW– to telephone domain. Finally, these mapped
features were used in the evaluation phase (enrollment and
test), with a x-vector system[2], trained on actual telephone
data. The feature mapping functions were implemented by
using recently proposed cycle-GANs [4], variant of the origi-
nal generative adversarial networks (GANs) [5]. In computer
vision, cycle-GANs were proposed to learn mapping func-
tions of images between domains with non parallel data.
Cycle-GANs soon found their way to speech research where
they were used for adapting automatic speech recognition
(ASR) trained on clean speech to noisy speech [6, 7], voice
conversion [8, 9, 10], and gender adaptation [11]. To the
best of our knowledge, we are the first ones to use cycle-
GANs for telephone-microphone channel domain adaptation
for improved speaker recognition.

The rest of the paper is organized as follows. In Section 2,
we introduce our feature adaptation mechanisms which use
cycle-GANs. Section 3 shows several alternate architectures
for the generator. In Section 4, we discuss the experimental
setup and in Section 5, we show the results. We conclude with
a summary of the paper and future work in Section 6.

2. CYCLE-GANS FOR DOMAIN ADAPTATION

Data for cycle-GANs training consists of features Xtel =
{xtel,i}Ni=1 and Xmic = {xmic,i}Mi=1, which are drawn from
two different distributions xtel,i ∼ ptel(x) and xmic,i ∼
pmic(x). No speaker labels from either domains are needed
to train the feature mapping system.

Cycle-GANs architecture in Figure 1 comprises two gen-
erators and two discriminators. The generator Gtel→mic

transforms telephone domain features Xtel to microphone
domain, producing features X̂mic gen. The discriminator
Dmic, is paired to Gtel→mic to discriminate between the
generated X̂mic gen and original Xmic microphone features.
Equivalently, the other generator-discriminator (Gmic→tel,
Dtel) pair is intended to transfer features from microphone to
telephone domain.
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(a) Generator Pair (b) Discriminator Pair

Fig. 1: Cycle-GANs architecture

In the Cycle-GANs framework, the generators and dis-
criminators are trained using a combination of loss functions,
i.e., adversarial, cycle consistency and identity loss. In the ad-
versarial loss, the discriminator minimizes the classification
error between real and transferred samples, while the gen-
erator tries to maximize it. For the discriminator loss, we
observed that mean square error provided better performance
than the typical cross-entropy, as shown in [12]. Thus, to train
Gmic→tel and Dtel, we optimize

LGAN(Gmic→tel, Dtel,Xmic,Xtel) = (1)

Ex∼ptel
[(Dtel(x)− 1)2] +Ex∼pmic

[Dtel(Gmic→tel(x)
2)] ,

where we minimize w.r.t. Dtel and maximize w.r.t. Gmic→tel

Equivalently, for Gtel→mic and Dmic, we optimize
LGAN(Gtel→mic, Dmic,Xtel,Xmic).

A single generator-discriminator pair, trained with adver-
sarial loss, would suffice to transfer features from microphone
to telephone domain. However, this leads to an ill poised
problem with adversarial loss putting a weak constraint on the
generators. Thus, the generator could create many possible
features which appear to be drawn from the true distributions
but that differ from it significantly. To restrict the space of
possible mappings from the generator, cycle-GANs enforce
cycle consistency constraint on the generators. Cycle con-
sistency consists of reconstructing the original features, e.g.
Xmic, from the adapted features in the opposite domain, e.g.,
X̂tel gen. That means to minimize the error between Xmic

and X̂mic rec = Gtel→mic(X̂tel gen). Considering cycle con-
sistency in both directions, the loss is

Lcyc(Gmic→tel, Gtel→mic) = (2)
Ex∼ptel

[||Gmic→tel(Gtel→mic(x))− x||1]
+ Ex∼pmic

[||Gtel→mic(Gmic→tel(x))− x||1] ,

where we used L1 distance as metric.
Finally, we added another loss taking into account that

when samples from the output domain are presented as input

to the generators, the generators should give an identity map-
ping [13]. We found this to be a good regularizer. Identity
loss is expressed as

Lidt(Gmic→tel, Gtel→mic) = (3)
Ex∼ptel

[||Gmic→tel(x)− x||1]
+ Ex∼pmic

[||Gtel→mic(x)− x||1]

Combining all the objectives, we have

L(Gmic→tel, Gtel→mic, Dmic, Dtel) = (4)
LGAN(Gmic→tel, Dtel, Xmic, Xtel)

+ LGAN(Gtel→mic, Dmic, Xtel, Xmic)

− λcLcyc(Gmic→tel, Gtel→mic)

− λiLidt(Gmic→tel, Gtel→mic)

where λc and λi control the relative importance given to
their respective objectives. The discriminators are trained to
minimize the objective function where as the generators are
trained to maximize it.

3. GENERATOR AND DISCRIMINATOR
ARCHITECTURES

We experimented with three different cycle-GANs architec-
tures. They differ on how the generators were built. All the
generators used in this work were built using two building
blocks: a downsampler and an upsampler. The downsampler
was realized using a series of 2D convolutional operations,
non linear layers and few residual blocks. We used 9 residual
blocks in this work. The second and third convolutional lay-
ers have stride 2 on both axes, which reduces the dimension
of output feature maps. Hence, the name downsampler. The
upsampler block is realized using two deconvolutional layers
followed by a final convolution layer. The deconvolutional
layers increase the dimension of the feature maps by apply-
ing a stride 1

2 . The architectures for the upsampler, residual
block and the downsampler are given in Figure 2. For all
the three architectures the discriminator architecture remains
unchanged. We explain below the architectures of the three
cycle-GANs used in this work.

3.1. Cycle-GANs system A

For this generator, the configuration in Figure 3a was used.
This is the most common architecture used in cycle-GANs.
The generator accepts inputs from one domain which by pass-
ing through the downsampler and upsampler maps those fea-
tures to the opposite domain.

3.2. Cycle-GANs system B

For this generator, the configuration in Figure 3b was used.
The output y of the generator given the input x is y = αx+
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(a) Downsampler network. (b) Residual Network

(c) Upsampler Network. (d) Discriminator Network.

Fig. 2: Architectures of individual blocks of cycle-GAN.

sigmoid(u) ◦ x, with 0 < α < 1, where u denotes the out-
put of the upsampler block. ◦ denotes element wise multi-
plication. Here, the purpose of the downsampler/upsampler
blocks is to compute a mask, which acts as a kind of filter.
The addition with the scaled input is to avoid the possibility
of obtained null components of the spectrum.

3.3. Cycle-GANs system C

For this generator, the configuration in Figure 3c was used.
The generator input is added to the output of the upsampler
which becomes the final output of the generator. This will
ensure that structure in the input data is preserved at the gen-
erator output. This architecture was inspired by the work done
for speech enhancement by [6].

(a) Cycle-GANs System A. (b) Cycle-GANs System B.

(c) Cycle-GANs System C.

Fig. 3: Different Generators for cycle-GANs system

4. EXPERIMENTAL SETUP
4.1. Datasets
We experimented adapting the microphone speech of the
SITW evaluation set to telephone domain. Then, we evalu-
ated the transformed SITW using an x-vector system trained
on telephone speech. The telephone data consisted of record-
ings from SRE04-10, Mixer6 and Switchboard 1-Phase 1,2
and 3. Together, they account to 90946 utterances from 6986
number of speakers. The microphone data used for adapta-
tion consisted of the SITW development set and VoxCeleb
database. Together they consist of 24581 utterances. There is
no speaker overlap between the development data and evalua-
tion data for SITW. The cycle-GANs training did not involve
any speaker label information.

4.2. Cycle-GANs training

The cycle-GANs are implemented using PyTorch [4]. Two
mini batches of features, one from telephone speech and other
from microphone speech, were sampled randomly from their
respective data sets during each training step. The minibatch
sizes were set to 256 and the number of contiguous frames
sampled from each utterance was set to 11. Since we used
2D convolutional neural networks, all the mini batches were
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Table 1: Comparison of Cycle-GANs domain adaptation on
the SITW eval set.

SITW Core SITW Assist-Multi

EER DCF(1E-2) DCF(1E-3) EER DCF(1E-2) DCF(1E-3)

Baseline 10.14 0.6842 0.8171 12.72 0.6941 0.8179

Cycle-GAN
System A 10.81 0.6852 0.8214 13.48 0.6930 0.8242
System B 9.63 0.6758 0.8212 12.19 0.6822 0.8119
System C 9.19 0.6649 0.8170 11.51 0.6797 0.8105

arranged as four dimensional tensors of size (256, 1, 11, 40),
40 being the dimension of filter bank features. The model was
trained for 100 epochs. Each epoch is set to be complete when
all the telephone utterances have appeared once in that epoch.
Utterances were sampled in random order. Adam Optimizer
was used with momentum β1 = 0.5 as suggested by [14]. The
learning rates for the generators and discriminators were set to
0.0003 and 0.0001 respectively. The learning rates were kept
constant for the first 15 epochs and, then, linearly decreased
until they reach the minimum learning rate (1e-6). For cycle-
GANs system B and C loss weights λc and λi from (4) were
set to 2.5 and 0.0 respectively. For cycle-GANs system A
λc and λi were set to 10.0 and 5.0 respectively. α value for
training cycle-GANs system B was set to 0.7.

4.3. x-Vector system

The x-vector system was based on Kaldi [15]. We used the
same setup as in SRE16 Kaldi recipe1 but without any data
augmentation. The data augmentation is done using artifi-
cially adding noise to speech which introduces new domains
(noise types). Our main goal of interest is to do domain adap-
tation across microphone and telephone domains. Hence, we
decided not to use data augmentation. The system used 40
dimensional Mel filter-bank features with short-time center-
ing. Microphone speech was downsampled from 16kHz to
8kHz. For the systems with adaptation microphone speech
filter-banks were transformed to telephone domain using the
Gmic→tel(x) generator. The x-vectors were centered, pro-
jected to 150 dimension using linear discriminant analysis
(LDA) and length normalized. Full-rank probabilistic lin-
ear discriminant analysis (PLDA) [16] was used to get the
scores. Finally, scores were normalized using adaptive sym-
metric norm (S-Norm) [17].

5. RESULTS

5.1. Comparison of different feature mapping systems

Table 1 gives a comparison of speaker ID results for all the
systems. All the systems were evaluated on the core and the
assist-multi (multiple speakers in enroll and test) conditions
of SITW database [1]. Domain adaptation with system A did

1https://github.com/kaldi-asr/kaldi/tree/master/
egs/sre16/v2

Table 2: Adapting SITW vs Adapting telephone training data.

SITW Core SITW Assist-Multi

EER DCF(1E-2) DCF(1E-3) EER DCF(1E-2) DCF(1E-3)

Cycle-GANs system C
Adapt SITW with Gmic→tel 9.19 0.6649 0.8170 11.51 0.6797 0.8105
Adapt training data with Gtel→mic 9.11 0.6631 0.8072 11.47 0.6736 0.8071

not improve the performance w.r.t. the baseline. System B
achieved relative improvement of 5.03% and 1.23% over the
baseline in terms of EER and DCF(1E-2). System C achieved
relative improvement of 9.37% and 2.82% in terms of EER
and DCF(1E-2) over the baseline.

5.2. Adapting SITW features vs adapting telephone
training features

So far we have discussed about mapping the features from mi-
crophone to telephone domain and evaluating on the x-vector
model trained on telephone data. However, we can also use
the generator Gtel→mic to map all the telephone features
to microphone domain and train the x-vector model on the
mapped features. SITW features remains unchanged when
evaluating the model. Table 2 compares both experiments.
Adapting telephone data to microphone domain obtained
larger improvements (10.16% reduction in EER and 3.08%
reduction in DCF(1E-2)). However, since the same telephone
data used to train the mapping system is used to train the
x-vector system this could result in over-fitting. Hence, this
requires further investigation by training the feature mapping
systems and x-vector on different telephone data.

6. SUMMARY

We explored the usage of cycle-GANs for learning feature
mapping functions across telephone and microphone domains
without any parallel data between both domains. We explored
three different configurations for the cycle-GANs, each dif-
ferent from the way the generators are defined. The main
challenge that we observed was to transfer features to another
domain while preserving the structure (like lingusitic infor-
mation, speaker information, etc). The best results were ob-
tained when the generators were trained to learn a residual
mapping between its input and output (cycle-GANs system
C). By mapping the features of SITW–a microphone speech
corpus– to telephone domain and testing those features on a
speaker recognition system trained completely on telephone
data, we obtained a reduction of 9.37% and 2.82% in terms
of EER and DCF(1E-2) w.r.t. the baseline system without
adaptation. Furthermore, by mapping the telephone data to
microphone domain and retraining the x-vector extractor, we
obtained a 10.16% and 3.08% respectively. In the future,
we intend to incorporate attention mechanisms in the feature
mapping functions and using speaker labels from telephone
domain while training cycle-GANs.
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