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ABSTRACT

Automatic Speech Verification (ASV) systems are highly
vulnerable to spoofing attacks, and replay attack poses the
greatest threat among various spoofing attacks. In this paper,
we propose a novel multi-channel feature extraction method
with attention-based adaptive filters (AAF). Original phase
information, discarded by conventional feature extraction
techniques after Fast Fourier Transform (FFT), is promising
in distinguishing genuine from replay spoofed speech. Ac-
cordingly, phase and magnitude information are respectively
extracted as phase channel and magnitude channel comple-
mentary features in our system. First, we make discriminative
ability analysis on full frequency bands with F-ratio meth-
ods. Then attention-based adaptive filters are implemented
to maximize capturing of high discriminative information on
frequency bands, and the results on ASVspoof 2017 chal-
lenge indicate that our proposed approach achieved relative
error reduction rates of 78.7% and 59.8% on development
and evaluation dataset than the baseline method.

Index Terms— replay attacks, phase information, fre-
quency bands, adaptive filters, ASVspoof 2017

1. INTRODUCTION

Automatic Speech Verification (ASV) systems [1] are re-
quired to be robust against spoofing attacks, and detection of
spoofed speeches (synthetic/converted/replay) has started to
receive more attention [2]. Among various spoofing attacks,
replay attack poses the greatest threat [3].

ASVspoof 2017 Challenge was organized with a focus
on the limitations of existing preventive measures against re-
play attacks, offering participants Constant Q Cepstral Coef-
ficients (CQCC) as a baseline feature set with a simple Gaus-
sian Mixture Model (GMM) as a classifier. Most of the anti-
spoofing systems currently proposed for replay attack detec-
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tion applied magnitude-based features derived from speech
signals. These include Mel Frequency Cepstral Coefficients
(MFCC), Linear Prediction Cepstral Coefficients (LPCC) [4],
Rectangular Frequency Cepstral Coefficients (RFCC) [5] and
Frequency Domain Linear Prediction (FDLP) [6]. Although
the magnitude-based features have proven to be effective and
widely used, it is also important to explore the effect of the
phase domain features, since there may be complementary
channel information to the magnitude-based features and lit-
tle related work has been done in replay attack detection.

Evidence of the effective utilization of the phase-related
feature in spoof speech detection (SSD) systems can be found
in related studies [7, 8]. For speech synthesis (SS) and voice
conversion (VC) attacks, Relative Phase (RP) has been pro-
posed with good performance [9]. Francis et al. utilized a
heavy end-to-end deep learning framework with Group De-
lay gram (GD-gram) to detect replay attacks. As the best-
performing system it implies promising effectiveness of the
feature containing phase for this task [10].

Frequency modulation also contributes to replay detec-
tion. These include Inverted Mel-Frequency Cepstral Coeffi-
cients (IMFCC) [11], high-frequency feature [12], high-level
feature from log power spectrum with the light convolution
neural network (LCNN) as a back-end [13], etc.

The motivations behind this work are: (1) For replay
attack detection, phase-based feature contains high discrim-
inative information discarded by the magnitude-based fea-
ture, hence incorporation of these two channels’ information
would be beneficial; and (2) Since recording and playback
scenes are complicated, features should be robust and adap-
tive rather than adhering to one invariable extracting method.

Thus in this paper, we propose attention-based adaptive
filters to extract high discriminating phase features based
on Relative Phase (RP) method [14]. We term the novel
attention-based adaptive Relative Phase (ARP) for replay de-
tection. This work also explores the use of the new proposed
method for extracting magnitude-based features that we term
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Fig. 1. Overview of the proposed framework for audio replay
attack detection. (Note: RP: Relative Phase, LFCC: Linear
Frequency Cepstral Coefficients).

attention-based Adaptive Frequency Cepstral Coefficients
(AFCC). Furthermore, the new proposed features are also uti-
lized as input of two channels for our replay detection system
due to their complementarity. Our proposed method is com-
pared with the CQCC (baseline method), MFCC, IMFCC,
RP on ASVspoof 2017 Challenge database [15].

2. MAGNITUDE AND PHASE INFORMATION WITH
ATTENTION-BASED ADAPTIVE FILTERS

As is illustrated in Fig. 1, our proposed framework could be
described by three parts: (1) full frequency band analysis on
discriminating abilities using F-ratio methods and the design
of attention-based adaptive filters (AAF), (2) proposal of the
novel adaptive relative phase (ARP) feature and adaptive fre-
quency cepstral coefficient (AFCC) feature, (3) score fusion
using phase and magnitude information to detect replay at-
tacks. In the following subsections, these three major compo-
nents will be described in detail, especially the proposed ARP
feature.

2.1. Frequency Bands Analysis Using F-ratio

The F-ratio has been presented to improve performance of
speaker recognition in early years, and it has shown effective-
ness on emphasizing individual information (inter-speaker)
and restraining linguistic information (intra-speaker) [16].
For anti-spoofing task, our goal is to enhance high discrim-
inative information between genuine class and replay class
and suppress speaker individual or linguistic information.
Guided by this idea, we imported the classic F-ratio analysis
method and implemented it on magnitude spectrum and phase

spectrum. The Fratio is defined as:

Fratio =

M∑
i=1

(ui − u)2

1
N

M∑
i=1

N∑
j=1

(xji − ui)2
, (1)

where xji is the jth sample feature vector of class i with j =
1, 2, ..., N , and i = 1, 2. ui and u are the average vectors for
class i and for all classes (genuine and replay) respectively,
which are defined as:

ui =
1

N

N∑
j=1

xji ,u =
1

M

M∑
i=1

ui. (2)

The dimension of Fratio (d) corresponds with the sample
vector in the genuine and replay classes:

d = dim(Fratio) = dim(x) = dim(u) (3)

Eq. (1) obtains a d-dimensional ratio vector between inter-
class variance and intra-class variance. Then we can map the
Fratio value to frequency axis uniformly, so that the dis-
criminative ability on full frequency bands could be described
by the Fratio value. Fratios denotes the Fratio value
of the sth frequency band point.

2.2. Attention-based Adaptive Filters (AAF)

For speech research, filters are designed to discard valueless
information and keep informative parts according to the spe-
cific task [17]. MFCC utilizes a mel scale to imitate human
hearing characteristics with a focus on low frequency regions.
But for replay detection, substantial informative and discrimi-
native information do not only exist in the auditory frequency
range. Therefore, the adaptive scale is proposed in this study
to pay more attention to the high discriminative frequency re-
gion adaptively rather than certain regions such as in IMFCC.

The proposed attention-based adaptive filters (AAF)
could be described by the filter distribution density df . The
whole frequency bands could be divided into several intervals
by an attention threshold ø. The frequency ranges above the
attention threshold are regions containing high discriminative
parts with a dense filter distribution, correspondingly, sparse
in the ranges below a threshold. The threshold ø is set as:

ø =
1

F ∗ S

F∑
f=1

S∑
s=1

Fratiofs , (4)

where Fratiofs means Fratio value of the sth band point
in the fth frequency range with s = 1, 2, ..., S and f =
1, 2, ..., F . Filter distribution density df is defined as follows:

df =

S∑
s=1

Fratiofs

F∑
f=1

S∑
s=1

Fratiofs

. (5)
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Then we could calculate filter numbers in each frequency
range, and adaptive scale filterbanks could be constructed.

2.3. Proposed Adaptive Relative Phase (ARP) Using AAF

The spectrumX(w) of a signal is obtained by DFT of an input
speech signal sequence x(n):

X(w) = |X(w)|ejθ(w), (6)

where |X(w)| and θ(w) are the magnitude spectrum and
phase spectrum at frequency w, respectively.

However, the phase changes depending on the clipping
position of the input speech waveform even at the same fre-
quency w. To overcome this problem, the phase of a certain
base frequency w is kept constant, and phases of other fre-
quencies are estimated relative to this. For example, by set-
ting the base frequency w to θ, we obtain:

X(w)
′

= |X(w)| × ejθ(w)× ej(−θ(w)), (7)

whereas for the other frequency w′ = 2f ′, the spectrum be-
comes:

X ′(w)
′

= |X ′(w′)| × ejθ(w′)× ej w′
w (−θ(w)). (8)

After normalization, the phase θ(w′) is transformed to:

θ̃(w′) = θ(w′) +
w′

w
(−θ(w)). (9)

Then the phase is mapped into the coordinates on a unit cir-
cle so that θ̃ could be constraint to {cosθ̃, sinθ̃}. In this
study, the relative phase is converted to the adaptive scale
using attention-based adaptive filter to improve the classifi-
cation quality, shown as follows:

RP (w′)
∗AdaptiveFilterbank
−−−−−−−−−−−−−−−−→ ARP (w′′) (10)

2.4. Feature Complementarity Using Magnitude and
Phase Information

In this study, we utilize a GMM-based replay speech detector
with input of phase-channel and magnitude-channel informa-
tion, and take Eq. (11) as measurements:

Score(O) = logp(O|λg)− logp(O|λs), (11)

where O is the feature vector of input speech, λg and λs are
the GMMs for original and replay speech, respectively.

For the score level fusion, we applied the linear combina-
tion proposed in [18] to obtain the final decision L:

L = αL1 + (1− α)L2, (12)

α =
L̄1

L̄1 + L̄2
, (13)

where L1 and L2 represent scores from independent feature
extracting models, L1 and L2 denote the averaged L1 and L2

over all the training data, respectively.

Table 1. Details of ASVspoof 2017 datasets.

Dataset Number of
speakers

Utterances

genuine spoof

Training 10 1508 1508
Development 8 760 950

Evaluation 24 1298 12008

3. EXPERIMENTS

3.1. Database

The ASVspoof 2017 challenge database originates from the
RedDots corpus [19], which is collected by ASV researchers
worldwide under various environments and unseen scenarios.
Three datasets are involved: train, development and evalua-
tion. The sampling rate is set at 16 kHz with sample precision
of 16 bits. Details of the database are shown in Table 1.

3.2. Experimental Setup

For F-ratio analysis on phase channel, the relative phase is
calculated every 5 ms with a window of 12.5 ms. A series of
experiments are conducted, and 118-dimensional static rela-
tive phase features (that is, 59 cosθ and 59 cosθ) have the
best tuning performance. For the magnitude channel, 39-
dimensional LFCC (13 LFCC, 13∆ LFCC, 13∆∆LFCC) is
chosen.

For the front-end feature extraction, CQCC is obtained by
a default setting of 96 bins-per-octave and 16 uniform sam-
ples in the first octave. All relative phase related features
adopt a number of 118 as dimensions. MelRP feature is cal-
culated through a mel-scale filter, and ARP is filtered by our
self-designed AAF. The magnitude-based feature in this study
keeps the same setting as the phase feature. Two back-end
classifiers, Gaussian Mixture Models of 512 components, are
trained using the EM (Expectation Maximization) algorithm,
on genuine and spoof utterances.

3.3. Results and Discussion

Based on the relative phase extraction method, a frequency
band analysis of discriminative ability has been made on
training and development dataset. Fig. 2 indicates that the
ranges [0, 1000 Hz] and [4000 Hz, 5000 Hz] are more infor-
mative and discriminative when the filters are densely placed.
In comparison, the number of filters in other frequency re-
gions should be determined by the sum of F-ratio values in
that region. Fig. 2 (c) illustrates our self-designed adaptive
filters and its frequency distribution characteristics. First,
experiments are conducted with individual features based
on the GMM detector. Results are summarized in Table 2.
From Table 2, we can find that our proposed ARP and AFCC
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(a) F-ratio Analysis.
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(b) Proposed adaptive-scale.
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(c) Filter distribution density on frequency bands.

Fig. 2. Process of designing AAF based on relative phase
method.

features outperform the CQCC, MFCC and MelRP features.
Compared with CQCC, AFCC achieved 61.2% relative error
reduction rate on development dataset, and ARP obtained
55.6% relative error reduction rate on evaluation dataset,
which shows that the adaptive scale is better than multi-scale
CQCC applied.The IMFCC resulted in a poor performance
confronted with a dataset mismatch problem. The traditional
phase method Modified Group Delay Cesptral Coefficients
(MGDCC) [20] feature seems unsuitable for this task because
of the equal attention to all frequency bands. Compared with
MelRP, the proposed ARP feature has improved 3.38% for
an absolute error reduction rate, which indicates that our at-
tention mechanism is feasible and effective. The table also
suggests that the phase-domain features investigated are more

Table 2. EERs % of spoofing detection performance of indi-
vidual features.

Feature Development Evaluation

CQCC 10.35 28.48
MFCC 13.74 34.39
IMFCC 4.83 28.59
MGDCC 25.92 38.10
RP 19.86 25.68
MelRP 10.36 16.03
AFCC 4.01 27.80
ARP 9.11 12.65

Table 3. EERs % of spoofing detection performance of score
fusion.

Feature Development Evaluation

CQCC+MFCC 10.75 29.33
CQCC+AFCC 3.57 28.02
CQCC+RP 9.06 20.98
CQCC+MelRP 5.02 13.88
CQCC+ARP 2.26 12.58
AFCC+ARP 2.23 11.95
ARP+AFCC+CQCC 2.20 11.43

robust on the evaluation dataset recorded under varied unseen
situations. Then phase feature and magnitude feature were
incorporated, and the results are shown in Table 3. Com-
pared with the baseline system, our proposed AFCC+ARP
achieved relative error reduction rates of 78.4% and 58.0%
on the development and evaluation dataset, respectively. This
may be attributed to the fact that the phase information is
incorporated into the score decision system and is comple-
mentary to the magnitude features. Also, the adaptive filters
with more attentions on high discriminative frequency re-
gions contribute to this result. Our best result is obtained by
ARP+AFCC+CQCC with an EER of 2.20% on the develop-
ment dataset and 11.43% on the evaluation dataset.

4. CONCLUSION

In this study, we proposed the attention-based adaptive fil-
ters (AAF) after the full frequency band discriminative con-
tribution analysis using the F-ratio method.A novel adaptive
relative phase feature was proposed with the self-designed
AAF, and accordingly, we obtained the AFCC feature in the
magnitude domain. Finally, a replay detecting system using
phase and magnitude complementary information was imple-
mented. From practical feature extraction standpoint, this
system is less complex compared to the state-of-the-art sys-
tems, with improvements of 78.7% and 59.8% on the de-
velopment and evaluation datasets, respectively. The results
showed effectiveness that the frequency regions with a higher
discriminating capability should be more emphasized adap-
tively. Also, it is indicated that the phase-based feature is
complementary to the magnitude-based feature, and our pro-
posed ARP method seems more robust to complicated record-
ing situations.
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