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ABSTRACT
Under noisy environments, to achieve the robust performance
of speaker recognition is still a challenging task. Motivated by
the promising performance of multi-task training in a variety
of image processing tasks, we explore the potential of multi-
task adversarial training for learning a noise-robust speak-
er embedding. In this paper, we present a novel framework
that consists of three components: an encoder that extracts
the noise-robust speaker embeddings; a classifier that classi-
fies the speakers; a discriminator that discriminates the noise
type of the speaker embeddings. Additionally , we propose
a training strategy using the training accuracy as an indicator
to stabilize the multi-class adversarial optimization process.
We conduct our experiments on the English and Mandarin
corpuses and the experimental results demonstrate that our
proposed multi-task adversarial training method could great-
ly outperform the other methods without adversarial training
in noisy environments. Furthermore, the experiments indicate
that our method is also able to improve the speaker verifica-
tion performance under the clean condition.

Index Terms— multi-task, speaker embedding, adversar-
ial training, speaker verification

1. INTRODUCTION

The task of speaker verification is to verify the identity of
speaker from a given speech utterance. In the past decade,
the i-vector system has achieved significant success in mod-
eling speaker identity and channel variability in the i-vector
space [1], which maps variable-length utterances into fixed-
length vectors. Then the fixed-length vectors will be fed to
a back-end classifier such as probabilistic linear discriminant
analysis (PLDA) [2].

Recently, with the rise of deep learning [3] in various
machine learning applications, the works [4, 5, 6] focused
on using neural network to verify speakers have explored its
potential capability in speaker recognition tasks. More re-
cently, many studies [7, 8, 9] have concentrated on extract-
ing utterance-level representation, which is known as speaker

embedding, using neural networks combined with a pooling
layer. This utterance-level representation can be further pro-
cessed by fully-connected layers.

Since proposed by Goodfellow et al. [10], generative ad-
versarial networks (GAN) have become the focus of many
studies in recent years. Its great success in image processing
has inspired people to consider whether it can also be applied
into the field of speech processing. In the paper [11], Zhang
et al. attempted to use conditional GAN to solve the impact
of performance degradation caused by the variable-duration
of utterances. Ding et al. [12] proposed a multi-tasking GAN
framework to extract the more distinctive speaker represen-
tation. And Yu et al. [13] proposed to train an adversarial
network for front-end denoising.

In the field of speaker recognition, there is a large quantity
of literature concerning the sharp degradation of performance
in the noisy environments. A common way to improve the
robustness of the system is to train the system using a dataset
consisting of clean and noisy data [14]. Speech enhancement
is another way of denoising such as short-time spectral am-
plitude minimum mean square error (STSA-MMSE) [15] and
many DNN-based enhancement methods [16, 17, 18]. Unlike
previous works denoising in the front-end, we plan to use a
multi-task adversarial framework to extract the noise-robust
speaker representation directly.

In this paper, we borrow the adversarial training idea of
GAN [10] and use the multi-task adversarial network (M-
TAN) structure to extract a noise-robust speaker embedding.
The entire framework consists of three parts: an encoder that
extracts the noise-robust speaker embeddings; a classifier
that classifies the speakers; a discriminator that discriminates
the noise type of the speaker embeddings, which also plays
the adversarial role combined with the encoder. In addition,
we propose a new loss function, namely AL-Loss (anti-label
loss), to realize the multi-class adversarial training. Further-
more, in order to balance the adversarial training process,
a new training strategy has been presented by employing
the training accuracy as an indicator to judge whether the
adversarial training has reached a balance.
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Fig. 1. The framework of our proposed multi-task adversarial network.

2. MULTI-TASK ADVERSARIAL NETWORK

2.1. CNN Based Embedding Learning

CNN-based neural network architecture has proved its supe-
rior performance in speaker verification tasks [7, 12]. In this
work, we use the CNN-based architecture for speaker embed-
ding learning which includes the encoder and classifier of the
framework shown in the dotted line of Fig. 1 (a). The de-
tails of the architecture are as follow. Four one-dimensional
convolutional layers with 1*1 filter, 1 stride and 256 chan-
nels followed by an average pooling layer which maps the
frame-level feature to an utterance-level representation. Then,
the speaker representation will be fed to the next two fully-
connected layers with 256 and 1024 nodes in sequence. Final-
ly, the output layer with Ns (the number of speakers in train-
ing data) nodes will take the speaker embeddings as input.
The output of last hidden layer is extracted as utterance-level
speaker embedding. Besides, batch normalization and RELU
activation function are applied to all layers except the output
layer. And the verification back-ends are shown in Fig.1 (b).

2.2. Multi-Task Adversarial Network

The entire architecture of MTAN is shown in Fig.1 (a). And
the implementation details of the encoder and classifier have
been demonstrated in Section 2.1. As to the discriminator, it
is just an output layer with M (the number of noise types in
training data) nodes. The arrows indicate the forward propa-
gation direction.

Given an input x ∈ Rt∗m where t and m refer to the
frame number and acoustic feature dimension of the utter-
ance respectively, the encoder maps it to a speaker embed-
ding E(x) ∈ Rn, where n is the dimension of latent embed-
ding. Then the classifier and the discriminator try to predict
the classes of E(x). Since our goal is to encode speaker in-
formation while eliminating performance degradation caused
by noise, the encoder should extract a latent representation
that is more discriminative for speaker and robust for noise.

In order to achieve this goal, we use the multi-task adversarial
network to learn discriminative speaker feature and simulta-
neously improve its noise robustness. Specifically, we train
the classifier cooperated with the encoder to extract discrimi-
native speaker feature. Besides, we play a minimax game by
training discriminator to maximize the probability of assign-
ing the correct noise label to the embedding extracted from
the encoder and simultaneously training the encoder to maxi-
mize the probability of assigning the wrong noise label to the
embedding.

2.3. Loss Function

In this work we consider cross entropy loss function and its
two variants. For the cooperative training of the classifier and
encoder, we directly minimize the cross entropy loss lCs (the
superscript C means classifier). For multi-class adversarial
training, the output of the discriminator will be fed to a cross
entropy loss function lDs (the superscript D means for discrim-
inator) and its variants including FL-Loss (fixed label loss)
proposed in [13] and AL-Loss. The details of loss functions
will be addressed in Section 2.3.1 and Section 2.3.2. Then a
minimax game will be executed with the value function ladv ,
which can be formulated as follow:

max
E

min
D

ladv = γlDs − βlvar (1)

where γ and β are scale parameters and lvar could be FL-Loss
or AL-Loss. When training an adversarial network, rather
than directly using the minimax loss, we split the optimiza-
tion into two independent objectives, one for encoder and one
for discriminator. Therefore, we train the encoder, discrimi-
nator and classifier by min

E
(lCs + βlvar), min

D
γlDs and min

C
lCs

respectively.

2.3.1. FL-Loss

Compared with the cross entropy loss function, FL-Loss uses
the fixed label “clean speech” [13] for all inputs to train the
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encoder. It can be formulated as follow:

lfl = −
1

N

N∑
i=1

log
eW

T
yc

yi+bi

M∑
j=1

eW
T
j yj+bj

(2)

where N is the training batch size, yc is the label of clean
speech and yi is the output of discriminator corresponding to
yc. Besides, W and b are the weights and biases of the output
layer. By assigning all data to clean speech label, the embed-
ding from noisy speech will be close to the embedding from
clean speech, since the constraint of FL-Loss will regularize
the encoder to learn a map function from noisy data distribu-
tion to clean data distribution.

2.3.2. AL-Loss

Inspired by the FL-Loss function, we propose the AL-Loss
function combined with the cross entropy loss function for the
multi-class adversarial task, which is formulated as follow:

lal = −
1

N

N∑
i=1

M∑
j=1,j 6=mc

log
eWj

T yj+bj

M∑
k=1

eW
T
k yk+bk

(3)

where mc is the corresponding ground truth label of the ith
sample. Unlike FL-Loss, we use the anti-label to calculate
the loss value, where the anti-label means flipping the value of
each bit in one hot vector of the ground truth label. min

E
lanti

means that the encoder would be trained to assign the output
of encoder to a wrong noise label equally, i.e., after adver-
sarial training, the embedding extracted from encoder will be
invariant to the clean and noisy speech.

3. EXPERIMENTS

3.1. Dataset and Experimental Setting

To evaluate the effective performance of the proposed frame-
work under the noisy environments, text-independent speak-
er verification (SV) experiments were conducted based on
Aishell-1 [19] (a Mandarin corpus) and Librispeech [20] (an
English corpus). The details of the two datasets are given as
follows:

• Aishell-1: We use the data of all three sets of Aishell-1
as the training data which contains about 141,600 utter-
ances from 400 speakers and use another corpus named
King-ASR-L-0571 as the test data which contains 6,167
recordings from 20 speakers.

• Librispeech: In our experiments, we use the train-
clean-500 part of Librispeech as training data which

1King-ASR-L-057: A Chinese Mandarin speech recognition database,
which is available at http://kingline.speechocean.com

contains about 148,688 utterances from 1,166 speak-
ers and the test-clean part as test data, which includes
2,020 recordings from 40 speakers.

We have made a noise corrupted version of the training
data mentioned above by artificially adding different types
of noise at different SNR levels. The original training data
was divided into two parts with scale of 1:5, in which five
out of six samples were added by the random noise. Speci-
cally, the noisy utterances for training were made by adding
one of the five noise types (white, babble, mensa, cafeteri-
a, callcener)2 randomly on the SNR levels of 10dB or 20dB.
However, the noisy utterances for the speaker verification test
were obtained by adding one of the five noise types on the
SNR levels of 0dB, 5dB, 10dB, 15dB and 20dB respectively.

All audios were converted to the features of 23-dimensional
MFCC with a frame-length of 25 ms and the frame shift of 10
ms. Then, a frame-level energy-based voice activity detector
(VAD) selection was conducted to the features.

Our implementation was based on the Tensorflow toolkit.
In our experiments, Adam optimizer with a learning rate of
0.01 was used for the back propagation. We alternate between
one step of optimizing the classifier and discriminator, and
three steps of optimizing the encoder.

3.2. Training Stability

In this work, we use the training accuracy as an indicator to
balance multi-class adversarial training. Specifically, we train
the encoder to maximize the probability of assigning a speak-
er embedding to a wrong noise label, which means decreasing
the training accuracy. However, we also train the discrimi-
nator to correctly assign the embedding to the ground truth
label, which means increasing the training accuracy. So the
accuracy could indicate the situation of adversarial training.
The training accuracy keeping in high or low all means ad-
versarial training doesn’t get a balance. In addition, we set a
lower threshold α and an upper threshold θ. When the aver-
age of the training accuracy of the latest K iterations is less
than the lower threshold or higher than the upper threshold,
we adjust the loss proportional factor of βlvar and γls during
the training. In our experiments, the encoder is trained better
than discriminator, so we just set a lower threshold (α = 0.4)
to balance the adversarial training process.

3.3. Results and Comparisons

In order to evaluate the performance of our proposed multi-
task adversarial network, five systems were investigated: the
CNN-based architecture trained using clean data (Baseline);
the CNN-based architecture trained using the noise corrupted

2white and babble were collected by Guoning Hu, and could be
downloaded at http://web.cse.ohio-state.edu/pnl. Besides, cafeteria noise,
callcener, and mensa were provided by HUAWEI TECHNOLOGIES CO.,
LTD.
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Table 1. EER(%) of the SV system using four methods for
different noise types and SNRs (dB) on Librispeech.

NOISE SNR Baseline MIX FL AL Fusion
Clean - 6.49 7.08 5.54 5.89 5.15

White

00 39.95 30.74 30.30 30.64 27.77
05 38.42 21.68 18.91 19.36 16.39
10 35.69 15.25 12.23 13.07 10.35
15 29.50 12.23 9.90 10.35 8.71
20 24.26 10.89 8.86 9.46 7.77

mean 33.56 18.16 16.04 16.58 14.20

Babble

00 30.74 20.05 20.00 18.71 17.72
05 25.05 12.72 11.09 19.36 10.30
10 19.46 10.00 8.07 13.07 7.77
15 14.41 8.91 7.53 10.35 6.93
20 11.09 8.07 6.49 9.46 6.09

mean 20.10 11.95 10.64 10.50 9.76

Cafeteria

00 32.52 19.80 20.30 18.91 17.18
05 26.73 14.36 12.03 12.72 10.74
10 21.24 10.99 9.26 9.41 8.27
15 16.14 8.91 7.48 7.62 6.83
20 12.03 8.37 6.24 6.93 6.09

mean 21.73 12.49 11.06 11.12 9.82

Callcener

00 28.81 15.79 14.85 14.31 13.27
05 23.12 10.00 9.21 10.00 8.76
10 17.28 8.71 7.48 7.33 6.63
15 12.67 7.97 6.24 6.63 5.89
20 9.90 7.72 6.49 6.29 5.89

mean 18.36 10.04 8.85 8.91 8.09

Mensa

00 35.89 21.14 20.05 20.30 18.56
05 31.14 14.16 11.68 13.12 10.64
10 25.10 9.75 9.11 9.31 8.07
15 19.21 8.71 7.23 7.67 6.68
20 14.11 7.87 6.14 6.68 6.04

mean 25.09 12.33 10.84 11.42 10.00

version of training data (MIX), which is a common method to
improve the performance under noisy environments; MTAN
trained using FL-Loss (FL); MTAN trained using AL-Loss
(AL); the fusion system of FL and AL (Fusion). Specifically,
the stabilization strategy proposed in this paper has been ap-
plied to both FL system and AL system. The equal error rate
(EER) values of different methods are shown in Table 1 and
Table 2.

The results show that our proposed methods achieved the
best performance across all of the SNR levels on Librispeech
corpus and the lowest EERs across the majority of the SNR
levels on Aishell-1 corpus. We can find that both FL sys-
tem and AL system outperform the baseline and MIX system
which indicates the adversarial training framework truly im-
proves the performance of SV task under the noisy environ-
ments. Besides, we have conducted score-level fusion using
the weights learned by linear regression algorithm to make
full use of complementary information between FL system
and AL system, which could further improve the discrimi-
native ability of the system. In addition, the results on two
corpuses in clean condition show that MTAN could outper-
form the Baseline system and MIX system even in the clean
condition.

Table 2. EER(%) of the SV system using four methods for
different noise types and SNRs (dB) on Aishell-1.

NOISE SNR Baseline MIX FL AL Fusion
Clean - 7.33 10.39 4.63 4.64 3.82

White

00 41.66 29.52 36.01 34.60 33.82
05 39.54 26.51 30.83 27.42 27.03
10 36.14 24.28 24.23 21.52 21.14
15 31.88 20.72 19.02 17.75 16.02
20 26.30 17.90 14.86 13.03 12.14

mean 35.10 23.79 24.99 22.86 22.03

Babble

00 28.48 24.49 25.73 25.55 22.93
05 22.54 18.87 17.71 17.56 15.44
10 17.76 15.59 12.72 12.51 10.94
15 14.10 13.64 9.35 9.81 8.86
20 11.90 12.36 7.25 7.41 7.11

mean 18.96 16.99 14.55 14.57 13.02

Cafeteria

00 29.24 24.75 25.15 25.64 22.58
05 23.58 19.19 17.92 17.27 15.41
10 18.60 15.86 12.54 12.14 10.62
15 14.16 13.64 9.01 8.92 8.04
20 11.44 12.23 7.17 6.88 6.62

mean 19.40 17.13 14.36 14.17 12.65

Callcener

00 27.24 22.71 23.48 22.95 20.47
05 21.48 17.95 15.94 15.88 13.61
10 16.72 14.87 11.75 11.56 10.02
15 13.16 13.11 8.50 8.42 7.83
20 10.79 12.22 6.77 6.68 6.49

mean 17.88 16.17 13.29 13.10 11.68

Mensa

00 33.53 25.1 26.2 25.89 23.16
05 27.84 20.07 18.76 18.43 16.23
10 21.90 16.59 14.24 13.69 12.07
15 16.90 14.26 10.55 9.89 9.10
20 13.61 12.61 8.12 7.56 7.59

mean 22.76 17.73 15.57 15.09 13.63

4. CONCLUSIONS

In this paper, we have explored the potential advantage of
MTAN in extracting noise-robust speaker representation. The
framework consists of three components: an encoder that
extracts a noise-robust speaker embedding, a classifier and
a discriminator that classifies the speaker and noise type of
the speaker embedding respectively. Unlike the traditional
multi-task learning where the encoder is trained to maximize
the classification accuracy of the classifier and discrimina-
tor, MTAN is trained adversarially to the noise classification
task, so that the embedding becomes speaker-discriminative
and noise-robust. Experimental results on the Aishell-1 and
Librispeech corpuses have shown that the proposed method
could achieve dominant results in clean condition and the
most noisy environments. In the future, we will conduct
the experiments in lower SNR condition and other related
applications.
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