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ABSTRACT

End-to-end modeling (E2E) of automatic speech recognition
(ASR) blends all the components of a traditional speech recognition
system into a single, unified model. Although it simplifies the
ASR systems, the unified model is hard to adapt when training and
testing data mismatches. In this work, we focus on contextual
speech recognition, which is particularly challenging for E2E
models because contextual information is only available in inference
time. To improve the performance in the presence of contextual
information during training, we propose to use class-based language
models (CLM) that can populate context-dependent information
during inference. To enable this approach to scale to a large
number of class members and minimize search errors, we propose
a token passing algorithm with an efficient token recombination
for E2E systems. We evaluate the proposed system on general
and contextual ASR tasks, and achieve relative 62% Word Error
Rate (WER) reduction for the contextual ASR task without hurting
recognition performance for the general ASR task. We also show
that the proposed method performs well without modification of
the decoding hyper-parameters across tasks, making it a desirable
solution for E2E ASR.

Index Terms— End-to-end Speech Recognition, Weighted Fi-
nite State Transducer, Token Passing, Class-based Language Model

1. INTRODUCTION

Automatic speech recognition (ASR) with Deep Neural Networks
(DNN) commonly operates in a hybrid framework. There are a few
models in this framework: DNNs, as discriminative acoustic models
(AM), estimate the posterior probabilities of Hidden Markov Model
(HMM) states; in the inference stage, external lexicons and language
models (LM) are combined with AMs. All of these models are opti-
mized independently [1]. Weighted Finite State Transducer (WFST)
[2] has been proposed to combine different knowledge sources and
perform search space optimization for efficient decoding, i.e., find-
ing the sequence of labels that best matches the input audio. One
way to perform efficient decoding is via Token Passing, which is a
single-pass algorithm that can generate multiple alternatives for each
WFST state [3].

Recently proposed E2E speech recognition has become popular
as a result of both recent advances in neural modeling of context and
history in sequences [4, 5], and more labeled training data for better
generalization. In E2E speech recognition, a single model predicts
words directly from input acoustics, which unifies the AMs, LMs,
and lexicons into one system. Although E2E training benefits from
sequence modeling and simplified inference [6, 7], it performs worse
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than traditional systems in long and noisy speech and needs a larger
amount of transcribed acoustic data [8, 9] to perform well. More-
over, traditional language models and the corresponding decoding
techniques are difficult to be incorporated into E2E systems [10, 11].
The inability to exploit knowledge from external language models
and lexicons especially hampers the adaptability of E2E systems.

The ability to leverage external knowledge is particularly impor-
tant for Contextual Speech Recognition [12] where contextual infor-
mation can provide additional information about what a user may
say and these information is only available at inference stage. Prior
work in this field suffers from limited scalability in both context
complexity and the amount of context phrases [13, 14], as discussed
in Section 2. In this work we propose to model the context-specific
information using a class-based LM (CLM) [15]. In this paradigm,
contextual knowledge is modeled by an n-gram LM. Context phrases
are composed on-the-fly into the CLM based WFST [16]. Because
the WFST is non-deterministic, as discussed in Section 3.2, each
E2E inference hypothesis includes alternative paths in the WFST. To
handle these alternative paths, we propose a token passing decoder
with an efficient token recombination for E2E systems for the first
time.

The rest of the paper is organized as follows. In Section 2, prior
works in E2E contextual speech recognition are briefly reviewed.
Our main contributions are in Sections 3: i) use CLM to solve con-
textual speech recognition and wake word problem. ii) propose a
token passing decoder for E2E inference. The relation to prior work
is discussed in Section 4. Experimental results are presented in
Section 5, followed by conclusion in Section 6.

2. CONTEXTUAL E2E SPEECH RECOGNITION

2.1. Attention-based End-to-end Modeling
We use the attention-based encoder-decoder model [17] for E2E
modeling. It predicts the posterior probability of label sequences
given both a feature sequence x and previous inference labels l1:i−1.

P (l|x) =
∏
i

P (li|x, l1:i−1) (1)

h = Encoder(x) (2)

P (li|x, l1:i−1) = AttentionDecoder(h, si−1) (3)

where h is the sequence of encoder states and si−1 is the decoder
hidden state from the previous time step. The Encoder(·) is typically
a unidirectional or bidirectional long short term memory (LSTM)
network while the AttentionDecoder(·) is a unidirectional LSTM.

Compared to traditional decoder in the hybrid system [1], the
AttentionDecoder(·) implicitly captures LM information in a way
that is jointly trained with the Encoder which can be interpreted as
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an acoustic model. Because of this tight unification between models
and decoder, such E2E systems cannot be easily adapted to new
domains or contexts. In contrast, traditional systems can do this
easily via updates to the language model [12].

2.2. On-the-fly Rescoring with External WFST
A contextual automatic speech recognition (ASR) system dynami-
cally incorporates real-time context into the recognition process of
a speech recognition system [12]. A typical example of contextual
information is the personal information such as a user’s contacts.

One branch of methods is to generate an on-the-fly contextual
LM and include it into the recognition process to bias the beam
search in Section 2.1. [13] introduces the shallow fusion approach.

l∗ = argmax
l

logP (l|x) + λ logPC(l) (4)

where PC(l) is the introduced contextual LM and λ is a scaling
factor. [13] proposes to use similar on-the-fly rescoring technique
as [16] to obtain PC(l). The method shows good performance
in limited number of context phrases but the recognition accuracy
starts to drop when the number of contexual phrases is above 100.
One possible reason could be that it follows the WFST search idea
from [16] to traverse epsilon arcs only in the absence of a matching
symbol. This can introduce significant search errors inside the word
class 1. We will look into this problem and propose methods to
alleviate it in Section 3.2.

2.3. Contextual E2E Modeling
Another method that try to integrate contextual information into the
E2E modeling is called CLAS [14]. This technique first embeds
each phrase, represented as a sequence of graphemes, into a fixed-
dimensional representation. And then it employs an attention mech-
anism to summarize the available context at each step of the output
predictions. By this way, CLAS explicitly models the probability of
seeing particular phrases given audio and previous labels.

To scale up this paradigm and make it into use, two fundamental
problems need to be considered: i) Model the similarities between
large amounts of context phrases. Although [14] proposes a condi-
tioning mechanism to reduce the amount of phrases considered, a
better and more unified solution is important to the scaling up [14].
ii) Constrain the search space of context phrases at a particular step
in AttentionDecoder(·). The above attention mechanism is done by
using all phrases, while general CLM [15] applied in this paper, only
uses contextual phrases that are relevant at current prediction step.

3. THE PROPOSED METHOD
3.1. Class-based Language Model and WFST
This work follows the paradigm and formulation of the shallow
fusion in Section 2.2. To solve the extendibility in modeling
complex context, we first extend the paradigm by using CLM [15].
CLM refers to introducing word equivalence classes into n-gram
LM. In contextual speech recognition, the contextual phrases, e.g.
a user’s favorite songs and contacts, can be grouped into multiple
word equivalence classes (inside the class). And the context of the
conversation is modeled by n-gram LM (outside the class).

We compile n-gram contexts with word equivalence classes(call
@name) and, contextual phrases(Tom Cruise, Lady Gaga) of each
word equivalence class in separate WFST graphs. These WFST
graphs are then composed with the ”speller” WFSTs [13] to obtain
the grapheme level WFSTs. We do determinization operation on

1[16] introduces a special backoff method on word level. Beside that, [13]
does not describe any further design on its ”speller” WFST inside the word.

Fig. 1. Examples of CLM in Contextual Speech Recognition (word
level WFSTs for simplicity). ”HEY / P(HEY)” denotes the symbol of
arc is ”HEY” with the probability P(HEY). States in the shaded box
represent names in the word class ”〈contact〉”.

WFSTs of contextual phrases to reduce number of tokens as dis-
cussed in the next section. In the inference stage, a form of on-the-
fly composition between the inside and outside the class WFSTs is
conducted [16], without requiring any changes to the pre-compiled
transducers [18]. Figure 1 shows an example.

Our proposed framework can also improve the wake word recog-
nition in the E2E system. We add a special word class in the start of
the sentence with a boosting factor (keyword boosting; tuned on the
development set). In the inference stage, the wake word grapheme
sequence is composed into word equivalence class similar to context
phrases.

3.2. Token Passing Decoder
In [16], it assumes that weight of matched-symbol arcs would always
be lower than backoff arcs. Because of this assumption, n-gram LM
WFST can be treated as deterministic and a single token decoder can
be used.

Grapheme level WFST is non-deterministic because of follow-
ing reasons: i) n-gram LM has backoff transitions. ii) Duplication
of phrases between two word equivalnce classes. iii) Duplication
of phrases between a word equivalnce class and n-gram LM words.
ii) and iii) are issues only because of on-the-fly composition as we
never determinize the whole WFST. Figure 2(a) shows an example.
Because of non-deterministic WFST, each graphemes hypothesis of
E2E inference can have multiple paths in WFST. To cope with mul-
tiple tokens for a hypothesis, we proposed a token passing decoder
for E2E system in Algorithm 1, with efficient token recombination.
Figure 2 shows examples of how to process tokens in our algorithm.

In algorithm 1, the k-th token in the token set H is defined as
a 4-element tuple (sk, lk, tk, qk), whereas sk is the k-th decoder
hidden state s

(k)
i−1 at the last prediction step in Equation (3); lk is

the partially-decoded sequences; tk is the last state of WFST path
whose output sequence is lk. Note that as discussed above, there
could be multiple tk associated with the same l; qk is the score for
the k-th partial hypothesis. At each decoding step, we expand k-th
token by concatenating lk with every grapheme: sk and qk are first
updated in Line 9 and 10. WFST states are then expanded in Line 12
to 15: SearchFST(tk, l) returns all the possible WFST states (and
the correspoding cost) which can be reached by departing from the
state tk and consuming the input symbol l; again multiple tokens
can exist with the new hypothesis output l′. TokenRecombination
function is proposed in Line 16: for every (l′k, t

′
k) pair, it is only

necessary to maintain the best token; for the same partial hypothesis
l′k, we only maintain Btok tokens at most. Finally, after expanding
all the current tokens inH, we select the bestB partial hypotheses l′k
in SelectTopN function. For the same partial hypothesis, we need to
maintain multiple tokens with different WFST states in our proposed
algorithm but its time complexity is similar to standard beam search
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as discussed later. Compared to the on-the-fly rescoring [13], an
important difference of our algorithm is:
• Multiple tokens. In the WFST search (line 12), previously pro-

posed on-the-fly rescoring [16] traverses epsilon transitions only
in the absence of a matching symbol. Figure 2(a) shows an ex-
ample where this can introduce search errors. For the grapheme
”C”, our proposed method would have two tokens corresponding
to state 5 and 6. State 6 extends from the backoff state 0, which
can be traversed from state 4. In [13], state 0 is not traversed
because state 4 already has a matched arc to state 5. This results
in not exploring state 6 and hence introducing a possible search
error. In this work, we propose to keep multiple tokens for each
hypothesis from E2E inference using token passing method.

Algorithm 1: Token Passing Algorithm for E2E Model

1 Input: h, defined in Equation (2)
2 Initialization: H = {(s0,"<bos>",FST.start, 0)} ;
3 while EndDetection(H) [19] 2 do
4 H′ ← {};
5 for (sk, lk, tk, qk) ∈ H do
6 for each grapheme l do
7 Hl = {} ;
8 • extend decoder network by grapheme l
9 l′k ← lk + l; q′k ← qk + p(l|sk,h);

10 s′k ← UpdateDecoderState(sk, l) ;
11 • extend FST state
12 T ′k ← SearchFST(tk, l);
13 for (t′k, p

′
k) ∈ T ′k do

14 Hl ← Hl ∪ {(s′k, l′k, t′k, q′k + λp′k)};
15 end
16 Hl ← TokenRecombination(Hl, Btok);
17 H′ ← H′ ∪Hl

18 end
19 end
20 H ← SelectTopN(H′, B)

21 end
22 return best path inH;

• Token Recombination. To reduce the amount of tokens in each
hypothesis and add diversity in WFST paths, token recombination
is proposed for the decoder. Tokens can be combined only if
they have both the same WFST state and E2E state. As different
hypotheses have different E2E states, the token recombination can
only be conducted on tokens of one hypothesis, e.g. Figure 2(b).

The proposed method does not change the computational com-
plexity of standard beam search in E2E inference. The complexity
of standard E2E inference is CE2E = O(B ·L ·D) +O(F ), where
B is the beam size of hypotheses , L is the length of the sequence,D
is the complexity of the decoder neural network of E2E and, F is the
complexity of encoder neural network of E2E. The token passing de-
coding does not change the beam search in E2E inference. Complex-
ity of token passing decoding isCDEC = O(B ·L ·Btok ·U), where
Btok is the beam of WFST tokens in each hypothesis,U is the size of
grapheme. SinceD � Btok ·U , we have CDEC +CE2E ≈ CE2E .

4. RELATION TO PRIOR WORK
In the inference stage of the E2E speech recognition, prior work such
as [20, 21, 22, 23, 10, 24] uses n-gram LM or NNLM to bias search

2We also force hypotheses to end in the end of WFST.

Fig. 2. Examples of the Token Passing Algorithm. States in the
shaded box are of the word class and they are generated from on-
the-fly composition. The small boxes below graphemes denote their
tokens and state numbers. In (a), the sixth grapheme ”C” is the pre-
fix of ”CHEN” and ”CALL”, corresponded to two tokens in different
WFST states (red dash circles). In (b), there are two ”MELODY”
in both inside the class and outside the class. Their tokens can be
recombined in state 6, where they are with the same history states in
both E2E and WFST.

space. In contextual E2E speech recognition, because of the mis-
match between training and test utterances, it is even more important
to integrate external knowledge sources to improve the WER. [13]
proposes to use on-the-fly composed external contextual LM to bias
the beam search of E2E inference. Another branch of methods [14]
tries to model the probability of seeing particular context phrase
given audio and previous labels. The prior work in this field suffer
from limited extendibility in both context complexity and the amount
of context phrases. The advantages of this work include: i) Better
generalization of complex context by using CLM. ii) Less search
errors by keeping E2E and WFST states separately using multiple
tokens with recombination in 1-pass decoding.

5. EXPERIMENTS
5.1. Setup
The data is collected with the help of crowd sourced workers. These
workers were asked to write and speak utterances that they could ask
an AI assistant. Each utterance could belong to general speech 3 or
one of many possible domains 4. We have 10 million utterances for
training. Size of General ASR testset is 60 thousand whereas size of
Contextual ASR testset is 10 thousand. In order to generate possible
members of CLM for Contextual ASR testset, we first extract the
true entity from the utterance and then add 999 fake entities of the
same type. Each utterance of Contextual ASR testset has wakeup
word in the beginning.

In training, 40-dimensional fiterbank feature is extracted with a

3e.g. what are the ingredient in pork stew?
4e.g. play Lady Gaga song (music domain), call Alex (calling domain).
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frame rate of 10ms. E2E models with grapheme units were built
with PyTorch [25] based on Espnet [26]. 2-layer BLSTM with 1400
nodes is used for the encoder, and 2-layer LSTM with 700 nodes is
used for the decoder. The model is optimized by both connectionist
temporal classification (CTC) and E2E criteria [19]. Our n-gram
LM is 3-gram LM trained on vocabulary of 300 thousand words. We
use value of 10 for both B (hypothesis beam size) and Btok (WFST
token beam size). Word error rate (WER) is used as the metric for
evaluation.

5.2. Performance Comparison
We compare performance of the E2E system for both Contextual
and General ASR testsets. Decoding hyper-parameters used for both
testsets are same in each of the row in Table 1. First row shows
experiments without using any LM for E2E system. The WER for
General ASR testset is 5.9 whereas WER for Contextual ASR test
is 34. The hardness of contextual speech recognition stems from: i)
Lack of wake word modeling in training set. This affects both the
recognition of wake word and history modeling 5 for the remaining
words. ii) Lack of contextual phrases in training utterances.

Table 1. WER of End-to-end ASR in General and Contextual ASR.

system General Contextual

E2E 5.9 35.1

+ n-gram LM 5.6 31.4
+ Class LM 5.7 13.5

The second row shows experiments with an external 3-gram
LM for E2E system. Decoding is performed by the proposed token
passing decoder. For the General ASR task, WER improves to 5.6%
from 5.9%. For Contextual ASR task, WER improves from 35.1%
to 31.4%. The improvement of general ASR from external n-gram
LM is consistent with the results in [23]. We do not examine NNLM
as the main purpose of this work is to improve the contextual ASR.
Improvement for Contextual ASR tasks results from boosting wake
word as discussed in the end of Section 3.1. Nevertheless, simply
boosting the scores of wake word can only help the recognition of
wake word, it does not solve the problem of history state mismatch of
the remaining words. Traditional LSTM-HMM systems trained with
a cross-entropy criterion gets 5.6% WER on General ASR testset for
same n-gram LM.

n-gram LM can easily be integrated with the CLM based
paradigm as discussed in Section 3.1. Experiemtns for the proposed
CLM based token passing decoder is in the third row. It achieves
similar performance 6 as n-gram LM for General ASR testset but
achieves significant improvement for Contextual ASR testset(from
31.4% to 13.5% WER). These improvements comes from 1)
modelling context using CLM and 2) reducing search errors by
token pass decoder. We conduct more analysis in the next section.
CLM is also good at adaptability as shown by comparable results
with n-gram LM for General ASR testset.

5.3. Analysis
We firstly show the effectiveness of the proposed method compared
to the shallow fusion [13] based systems. Previous shallow fusion
based systems essentially has value of Btok(beam size of WFST

5If the model does not see the wake word during training, it cannot rec-
ognize both the wake word and speech after the wake word while decoding
because of the unseen history state

6The slight difference stems from more WFST branchings of contextual
phrases in CLM based WFST.
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Fig. 3. WER v.s. Beam of WFST Tokens in the Token Passing
Decoder.

tokens) as 1. Figure 3 shows relationship between WER and Btok.
With Btok less than 5, the system has significantly worse perfor-
mance 7, which is consistent with the performance degradation with
more than 1K phrases in [14]. This shows the importance of using
multiple tokens in the WFST beam.

In Figure 4, we show experiments for scaling up number of
contextual phrases. Though increasing the number of contextual
phrases degrades the WER, we still have acceptable WER for upto
5K phrases, which is acceptable for most of the real world applica-
tions. After around 8K phrases, the system breaks down.
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Finally, we show impact on WER for General ASR when we
tune hyper-parameter to improve Contextual ASR. The curves in
Figure 5 are mostly smooth, which shows general ASR performance
is not sensitive to the contextual ASR performance and, vice versa.

5.7 5.7 5.7
7

8

16

14
13.2 13.3 13.4

0

5

10

15

20

1 2 3 4 5 6 7

W
ER

CLASS BOOST LVCSR Contextual ASR

Fig. 5. class boosting, defined in Section 3.1 and its Effects in
General and Contextual ASR. Similar trend in keyword boosting.

6. CONCLUSION
In this work, we propose to (a) use CLM to solve contextual speech
recognition with (b) token passing decoder for E2E inference. The
result on contextual ASR achieves consistent and significant im-
provements. Future works include extendibility to large number of
context phrases and combining NNLM [27, 28].

7Notably, we do not observe this phenomenon in general ASR [13]. We
believe the different observation can be the over-biasing stems from the
perplexity difference between word classes in CLM.
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