
PHOEBE: PRONUNCIATION-AWARE CONTEXTUALIZATION FOR END-TO-END SPEECH
RECOGNITION

Antoine Bruguier, Rohit Prabhavalkar, Golan Pundak, Tara N. Sainath

Google USA
{tonybruguier,prabhavalkar,golan,tsainath}@google.com

ABSTRACT

End-to-End (E2E) automatic speech recognition (ASR) systems
learn word spellings directly from text-audio pairs, in contrast to
traditional ASR systems which incorporate a separate pronunciation
lexicon. The lexicon allows a traditional system to correctly spell
rare words observed only in LM training, if their phonetic pronun-
ciation is known during inference. E2E systems, however, are more
likely to misspell rare words.

We propose an E2E model which benefits from the best of both
worlds: it outputs graphemes, and thus learns to spell words directly,
while leveraging pronunciations for words which might be likely in
a given context. Our model is based on the recently proposed Con-
textual Listen, Attend, and Spell (CLAS) model. As in CLAS, our
model accepts a set of bias phrases, which are first converted into
fixed length embeddings which are provided as additional inputs to
the model. Unlike CLAS, which accepts only the textual form of
the bias phrases, the proposed model also has access to the corre-
sponding phonetic pronunciations, which improves performance on
challenging sets which include words unseen in training. The pro-
posed model provides a 16% relative word-error-rate reduction over
CLAS when both the phonetic and written representation of the con-
text bias phrases are used.

Index Terms— speech recognition, sequence-to-sequence, bi-
asing, pronunciation, LAS

1. INTRODUCTION

Traditionally, automatic speech recognition (ASR) systems have
relied on three models: an acoustic model (AM), a pronunciation
model (PM), and a language model (LM) [1]. These three models
are mostly tuned independently using different objective functions.
For example, we tune the AM to predict a sequence of context-
dependent phones from acoustics and we tune the LM to lower
perplexity.

Designs decisions for the PM influence both the AM and the
LM. For the PM, we need to choose a set a phonemes to represent
all the possible distinct unit of sounds, thus determining the set of
labels the AM has to predict. All the words in the LM must have a
pronunciation. Moreover, having an accurate PM with a large cov-
erage is a challenging task. For a given variant of a language, the
phoneme set varies from region to region. For example, in Amer-
ican English, native speakers do not agree whether words like pen
and pin are pronounced the same way. Another issue is reduced pro-
nunciations, where speakers may or may not pronounce the letter ‘t’
in words like twenty. Finally, to have a pronunciation for every word,
the model must back off to a grapheme-to-phoneme (G2P) model.

Recently, researchers have investigated end-to-end (E2E) mod-
els which predict graphemes or wordpieces [2, 3, 4, 5, 6]. These
models fold the AM, PM and LM into a single neural network. Re-
cent work [7, 8] has shown that the joint optimization of these mod-
ules not only helps make the ASR model much simpler, but also
achieve a competitive word error rate (WER) compared to a conven-
tional ASR system. However, one of the downsides of E2E models
is that they perform poorly on infrequent words of a language [9].
Since E2E models require human-transcribed voice data, which is
expensive to acquire, several approaches [10, 11, 12, 13] very suc-
cessfully incorporate text-only data to greatly improve quality.

Do we still need pronunciation lexica? On the one hand, having
a E2E model seems to be a better strategy for accurate ASR because
it directly optimizes for WER. However without paired text-audio
data, it is unlikely that an E2E model would be able to recognize
words that have unusual pronunciations given their spelling. Indeed,
even native speakers who have never heard words like Pfafftown /p
O: f . t aU n/ (first ‘f’ is silent), would have a hard time
predicting their pronunciations. Given that the distribution of words
in a language typically follows a Zipf distribution, adding more and
more training examples yields diminshing improvements and pure
text data would be unlikely to be helpful. An alternative for improv-
ing rare word performance was presented in [14], which showed that
context biasing can improve recognition for rare words when a con-
text can be present. For example, since a user’s contacts are stored on
the phone, they can be used as additional context to help recognition
performance.

In this paper, we explore using a pronunciation lexicon in an
E2E model, while still retaining the joint optimization benefit of
E2E models by predicting graphemes. Specifically, past work [14]
has focused on injecting context1 into the E2E model in the form
of graphemes, through a model known as contextualized Listen, At-
tend, and Spell (CLAS). We extend CLAS by injecting pronuncia-
tions into the context module, but still predict graphemes as output
units from the model. From the outside, the model still behaves like
an E2E model that takes audio and predicts text; there is no need
for constructing or decoding with an optimized decoder graph, or
the need to add a separate text normalization module. Our approach,
which we refer to as Phoebe,2 is able to inject additional phonetic
knowledge while improving WER by up to 16% relative.

1By “context”, we mean additional inputs beyond the audio that might be
relevant to the recognition process (e.g., contact list, user’s library of song
names, etc.). Such information could be used to “bias” the recognition to-
wards these words or phrases.

2The name comes from the authors misunderstanding each other when
discussing “PHOnEtic Biasing for End-to-end models”.

6171978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. PRIOR WORK

2.1. Listen, Attend, and Spell (LAS)

The LAS model is an E2E ASR system based on the encoder-
decoder architecture [4]. The light blue boxes in figure 1 correspond
to this model.

The LAS model outputs a probability distribution P (y|x) over
sequences of output labels y (graphemes, in this work) conditioned
on a sequence of input audio frames x = (x1, . . . , xU) (log-mel
features, in this work). The model is trained to minimize JLAS =
− logP (y|x).

The encoder is composed of a stacked layer of unidirectional
LSTMs, which embed the input sequence x into a sequence hx. The
decoder consumes these embedding via an attention mechanism that
summarizes the inputs in a context vector cxt . The attention [15, 16]
uses two inputs. The first input hx is an embedding of the audio
frames (the superscript x denotes the fact that it comes from audio).
The second input is the output of the decoder at the previous step:
dxt−1. The decoder, which is also composed from layers of unidirec-
tional LSTMs, outputs dxt (first layer) and a vector yt (last layer) for
every decoding step t conditioned on the context vector cxt and on
previous output yt−1, and stops when an end-of-sequence token is
emitted. We did not use scheduled sampling [17] for training.

2.2. Contextual LAS model (CLAS)

The Contextual LAS model (CLAS) is a modification of LAS, which
allows it to take as input a set of bias phrases in addition to the usual
sequence of audio frames. A biasing phrase could be “John Smith”,
an entry in the user’s contact list. This model was shown to outper-
form other contextualization techniques in on some tasks [14] and is
depicted in figure 1.

Each of the bias phrases g1 . . . gN is provided to CLAS as a
sequence of graphemes (represented as one-hot encoding), which are
then embedded into a set of fixed length vectors hg = (hg

1 . . . h
g
N)

using an LSTM. The CLAS decoder then accepts in each decoding
step t both an audio vector cxt as well as a biasing vector cgt , obtained
from attention computed over hg (using the decoder’s state dgt−1 as
attention-query).

Equation 1 describes the bias attention computation of a single
bias phrase. It takes as inputs the bias grapheme embeddings hg

i and
the previous decoding state dgt−1 and compute an attention weight - a
set of weights ug

it for decoding step t. The output is then normalized
with a softmax to obtain αg

t .

ug
it = vgT tanh (W g

h .h
g
i +W g

d .d
g
t + bg) (1)

αg
t = softmax (ug

t) (2)

Then, the bias context vector is computed as a weighted sum of
the embeddings hg

i (Equation 3).

cgt =

N∑
i=1

αg
ith

g
i (3)

One of the shortcomings of CLAS, as presented in [14], is that
only grapheme embeddings are fed to the context module. Error
analysis shows that E2E models struggle with rare words [9] espe-
cially those that have unusual pronunciations. In the next section, we
address this shortcoming of CLAS by injecting pronunciations into
the context module.

3. PHOEBE

3.1. Model

The new model is depicted in figure 2. Our objective with Phoebe
is to improve problems with rare words by injecting lexical entries,
without having to resort to building a model that outputs phonemes,
which has its own pitfalls [9].

First, we keep the current output of the LAS architecture, and
thus P (yt|yt−1 . . . y1;x) corresponds to a probability of graphemes
only. Next, we need to specify the inputs to the decoder. Specifi-
cally, we decided that the decoder input cgt should not directly in-
corporate phonetic information and thus should only be a weighted
sum of grapheme embeddings. Since the decoder operates on
graphemes only, it seems natural to have an additional input in terms
of graphemes only.

In order to add pronunciation information, we added a separate
encoder, shown in green in figure 2. For each of the N biasing
phrases, we look up the pronunciations and we obtain N strings of
phonemes. The lookup is done with our current lexicon dictionary
backed by a G2P for out-of-vocabulary words. Since we also use a
no-biasing option like in [14], we have a corresponding empty string
of phonemes for it. Each of theN strings of phonemes is encoded in
a similar way as the biasing phrases themselves are: the phonemes
are one-hot encoded and then go through an LSTM network of iden-
tical dimension as the one for the graphemes and we obtain hp. The
embedding is done independently and thus there is not necessarily
any relationship between the embeddings of the graphemes and the
phonemes.

Given both phoneme and grapheme embeddings (hg and hp),
the next design choice was how to modify the bias attention. We can
interpret attention as having two aspects. The first one is to com-
pute a set of weights using equations 1 and 2. The second aspect
is to use the set of weights to compute a weighted sum of embed-
dings using equation 3. While we want the attention to take ad-
vantage of both grapheme and phoneme information, we want cgt to
be only a weighted sum of graphemes. Therefore, we decided to
use both graphemes and phonemes to compute attention weights but
once the attention weights were computed, we used them to com-
pute a weighted sum of only the grapheme embeddings. With this
approach, there is no a-priori relationship between spelling and pro-
nunciation, and we can assign an arbitrary sequence of phonemes to
any word.

Mathematically, this means that equations 2 and 3 above are
left unchanged. However, we do modify equation 1 to also use the
phoneme embeddings. The new terms are highlighted below where
the square brackets represent a vector concatenation and P is a pro-
jection matrix:

ug
it = vgT tanh (W g

h .h
g
i + P.W gp

d .[dg
t ; d

p
t]+ bg) (4)

By having both inputs, we guarantee that the new model is a
strict superset of the old model. In the subsequent experiments, we
kept the dimensions of the modules that are common between fig-
ures 1 and 2 identical (through the projection matrix), so that the
only changes were due to the injection of pronunciations. As an al-
ternative to concatenating phoneme and grapheme embeddings, pilot
experiments considered using phoneme embeddings (dpt) alone but
were not as successful.

3.2. Training

The sampling of which words to use as biasing inputs was simi-
lar to [14]. The training examples are used in batch, and for each

6172

P (yt|yt−1 . . . y1;x)

Softmax

Decoderyt−1 dxt , d
g
t

Attention Bias attentiondxt−1 dgt−1

Encoder Grapheme
encoder

x1 . . . xU
(audio frames)

g1 . . . gN
(graphemes)

cxt
cgt

hx
u

hg
i

Fig. 1. The CLAS model. Light blue boxes correspond to the LAS
blocks, and light yellow boxes to its contextual extension. Note that
this model accepts bias phrases only in the form of graphemes.

P (yt|yt−1 . . . y1;x)

Softmax

Decoderyt−1 dxt , d
g
t , d

p
t

Attention Bias
attention

Projection

dxt−1 dgt−1, d
P
t−1

Encoder
Grapheme
encoder

Phoneme
encoder

x1 . . . xU
(audio
frames)

g1 . . . gN
(graphemes)

p1 . . . pN
(phonemes)

cxt

cgt

hx
u

hg
i

hp
i

Fig. 2. The Phoebe Model. Here the light green boxes correspond
to the phonetic components added to the CLAS model on the left.

batch, we randomly kept the reference transcript with probability
Pkeep. This allows to have examples for which there was no match-
ing biasing. For the remaining reference transcripts, we randomly
selected n-grams (where n is uniformly sampled from [1, Norder]).
The number of selected n-grams was N (from figure 2) where N
was uniformly sampled from [1, Nphrases]. In all cases, we also added
a “no-biasing” option, where the biasing graphemes and phonemes
were empty. This sampling approach ensured that some examples
did not have matching words, while others did.

As in [14], we also introduced a special token to help the model
converge. After each matching bias phrase, we added a special to-
ken </bias>. For example, if the training example is average
panda weight and the biasing phrase is panda, then the tran-
script is modified to be average panda</bias> weight. It
introduces a biasing error that can only be corrected by using the
biasing phrase, as suggested by [18].

For the phonemes, we used a mix of lexicon and G2P [19]. If a
word was in our lexicon, we used its corresponding pronunciation.
In case there were multiple possible pronunciations, we randomly
picked one of them. In case the word was not present in the lexicon,
we used a G2P to predict the pronunciation and if it failed we used an
empty string of phonemes. While ideally, we would know the cor-
rect pronunciation for every word in the biasing set, this would have
required to have humans annotate our training data phonetically, and
this was not available to us.

3.3. Inference

During the inference, we optionally provided contextual informa-
tion. For example, for test sets where users wanted to contact some-
one (e.g. “send a text message to Jane Doe”), we created a bias
phrase list that contained the correct contact name (“Jane Doe”) and
other non-matching names as distractors, with pronunciations ob-
tained either from the lexicon of G2P as in training. We also ran
experiments where the context information was always empty, to
check whether phoneme injection impacts performance when these
are not provided.

4. EXPERIMENTS

4.1. Experimental Setup

Our setup was similar to [15]. For training, we used about 35 million
US English audio utterances (∼ 27,500 hours). The training utter-

Test set CLAS Phoebe Change
E1 Voice search 6.3 6.3 nil
E2 Dictation 5.6 6.1 +9%

Table 1. WER on CLAS (Figure 1) and Phoebe (Figure 2) models.

ances are anonymized and hand-transcribed, and are representative
of Google’s voice search traffic. In addition, we added noise and
reverberation during training as in [20].

The models evaluated in this section are trained on 8× 8 Tensor
Processing Units (TPU) [21] slices with global batch size of 4,096.
Each training core operates on a shard-size of 32 utterances in each
training step. From this shard, bias phrases are randomized and thus
each shard receives a maximum of 32 bias phrases during training.

The LAS model architecture is as follows. The encoder has 10
LSTM layers, each having 256 nodes and a hidden size of 1,400.
Multi-head attention with 4 heads is used with context vectors of
dimension 512. Finally, the decoder consisted of 4 LSTM layers,
each of size 256 with a hidden dimension of 1,024. The grapheme
and phoneme encoders had the same setup. They both were single
layer LSTMs with 512 dimensions.

As in [14], we used Pkeep = 0.5, Nphrases = 1, and Norder = 4.

4.2. Results

As a check, we first measured the performance of both models on
sets of general traffic, shown in Table 1. The first set was a random
sampling of queries to perform web searches (E1). The second set
was a random sampling of dictation queries such as for the content
SMS or email messages (E2). In both experiments, the biasing list
was empty. For both CLAS and Phoebe, we had picked the best
training step based on performance of the set of E1 (there was mini-
mal variability) and we see that the performance is roughly identical.
For the dictation set E2, there is a degradation of about 9%. In prac-
tice, we feel that it is not a major issue since we already use distinct
models.

Next, we measured the quality of our new model on a test set
that consisted of users issue voice commands to make a phone call
to a contact (e.g. “Call John Smith’s cell phone”). The test set was
human-transcribed to contain about 5,000 utterances sampled from
real traffic. For each of the utterances, we had a biasing context
of about 200 names, with one of them being the correct name, and
the others being distractors. The results are shown on table 2 (E3).
We see a relative improvement of word-error-rate (WER) of about

6173

Test set CLAS Phoebe Change
E3 Real 12.2 10.2 -16%
E5 [no bias] [17.2] [17.9]
E4 TTS 11.8 10.5 -11%
E6 [no bias] [28.7] [28.4]

Table 2. WER for CLAS (Figure 1) and Phoebe (Figure 2) models
for contact utterances.

Word type Count CLAS Phoebe Change
E3 Common 12,184 9.1 7.7 -15%
E3 Rare 1,396 26.9 20.6 -23%

Table 3. WER on contacts set with biasing (E3 from table 2) segre-
gated by word frequency.

16% from 12.2 to 10.2. For reference, we also include in square
brackets the WER for when the biasing context is removed (E5). In
practice, the context is present, so these higher WER numbers are
not experienced by the users.

4.3. Analysis

To confirm our intuition that the improvements were due to the pho-
netic injection, we measured the performance on common and rare
words. We segregated words by their frequency in a large text cor-
pus. Depending on whether the word was among the 32,000 most
common ones or not, we declared it “common” or “rare”. We then
classified the words of E3 from table 2 and measured their WER (Ta-
ble 3). Unsurprisingly, the WER for common words was lower than
the average for both CLAS (9.1 vs 12.2) and Phoebe (7.7 vs 10.2).
For uncommon words, the situation was flipped for both CLAS (26.9
vs 12.2) and Phoebe (20.6 vs 10.2). We also confirmed that the rel-
ative improvements were greater for rare words (-23% relative) than
for common words (-15% relative).

Finally, we wanted to observe the performance on individual
transcripts. To do this, we synthesized a set that does not use real
users’ data. Using a sample of names, we used Google’s text-to-
speech (TTS) system WaveNet [22] to synthesize audio. We then
augmented the context with additional unrelated names, and ran
recognition. We report the overall performance of the models on
table 2 (E4 and E6). These numbers are not true measures of the
performance of the models, since we used the same lexicon for both
ASR and TTS, thus making the problem easier. Nonetheless, the
relative changes mostly agree with E3.

We report examples that we felt were typical of the behavior of
the new models in Table 4. We see in examples A and B that the
improvements come from unusual names, even if in example D the
improvements are not always present. In addition, the new model

Reference CLAS Phoebe
A call nicola

mondesir from
contacts

call nicola
mondesier
from contacts

call nicola
mondesir from
contacts

B call knaub
vickie work

call kanab vicki
work

call knaub
vickie work

C video call
kosek

video call
kosek

video called
kosek

D hey google can
i call hughley

hey google can
i call hughley

hey google can
i call hughle

E call my Gilda at
work

oh i know that
works

call my gilda at
work

Table 4. Example of individual results on TTS set (E4) with correct
words in blue and incorrect ones in red.

Fig. 3. Attention weights αg
t from equation 2 for row E of table 4 for

CLAS (top), Phoebe (middle), and Phoebe with incorrect pronunci-
ation (bottom).
seem to be making slightly more mistakes with words that are not
part of the name, as show in example C.

Finally, we sought out an extreme example of where Phoebe
outperformed CLAS, shown on row E of table 4. On figure 3, we
plotted the bias attention weights for the biasing phrases (y-axis)
as a function of the decoding step (x-axis). The correct biasing
phrase is “gilda” and the other words such as “cloey” are distrac-
tors. We see that the Phoebe model is able to attend to the correct
name, thus resulting in an improvement of the recognition. If we
purposely degrade the system by changing the pronunciation for the
word “gilda” to be /r\ oU z @ l i/ (“rosalie”), we see that the
model no longer attend to it and its predicted transcript is “call my
donut work”, thus demonstrating that the phonetic information is be-
ing used.

5. CONCLUSION

In this paper, we presented an improvement on biasing for E2E ASR
models. By injecting pronunciation knowledge into an extension of
the model of [14], we were able to get a 16% relative improvement
over the baseline model. The new model still retains the advantages
of E2E models (simple and unified training, implicit learning of pro-
nunciation of common words), while at the same time incorporates
knowledge of tail words’ pronunciation even if they have never been
seen during training.

We have thus taken a step towards addressing the challenges
presented in [9] for biasing. Future work will focus on injecting
knowledge of unseen words when biasing information is not readily
available.

6. REFERENCES

[1] Hervé Bourlard and Nelson Morgan, Connectionist speech
recognition, Kluwer Academic Publishers, 1994.

[2] R Prabhavalkar, K Rao, TN Sainath, Bo Li, Leif Johnson, and
Navdeep Jaitly, “A comparison of sequence-to-sequence mod-
els for speech recognition,” Interspeech, 2017.

[3] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar, “Exploring
architectures, data and units for streaming end-to-end speech
recognition with rnn-transducer,” ASRU, 2017.

[4] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals,
“Listen, attend and spell,” ICASSP, 2016.

6174

[5] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philémon Brakel, and Yoshua Bengio, “End-to-end attention-
based large vocabulary speech recognition,” ICASSP, 2016.

[6] Shinji Watanabe, Takaaki Hori, Jonathan Le Roux, and John R.
Hershey, “Student-teacher network learning with enhanced
features,” ICASSP, 2017.

[7] Kartik Audhkhasi, Brian Kingsbury, Bhuvana Ramabhadran,
George Saon, and Michael Picheny, “Building competi-
tive direct acoustics-to-word models for english conversational
speech recognition,” ICASSP, 2018.

[8] Amit Das, Jinyu Li, Rui Zhao, and Yifan Gong, “Advancing
connectionist temporal classification with attention modeling,”
ICASSP, 2018.

[9] Tara N. Sainath, Rohit Prabhavalkar, Shankar Kumar, Seungji
Lee, Anjuli Kannan, David Rybach, Vlad Schogol, Patrick
Nguyen, Bo Li, Yonghui Wu, Zhifeng Chen, and Chung-Cheng
Chiu, “No need for a lexicon? evaluating the value of the pro-
nunciation lexica in end-to-end models,” ICASSP, 2018.

[10] Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and Adam
Coates, “Cold fusion: Training seq2seq models together with
language models,” Interspeech, 2018.

[11] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N. Sainath,
Zhifeng Chen, and Rohit Prabhavalkar, “An analysis of in-
corporating an external language model into a sequence-to-
sequence model,” ICASSP, 2018.

[12] Adithya Renduchintala, Shuoyang Ding, Matthew Wiesner,
and Shinji Watanabe, “Multi-modal data augmentation for end-
to-end asr,” Interspeech, 2018.

[13] Shigeki Karita, Shinji Watanabe, Tomoharu Iwata, Atsunori
Ogawa, and Marc Delcroix, “Semi-supervised end-to-end
speech recognition,” Interspeech, 2017.

[14] Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar, Anjuli
Kannan, and Ding Zhao, “Deep context: End-to-end contex-
tual speech recognition,” SLT, 2018.

[15] Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit
Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kan-
nan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, Navdeep
Jaitly, Bo Li, Jan Chorowski, and Michiel Bacchiani, “State-of-
the-art speech recognition with sequence-to-sequence models,”
ICASSP, 2018.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” NIPS, 2017.

[17] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer, “Scheduled sampling for sequence prediction with
recurrent neural networks,” NIPS, 2015.

[18] Yanzhang He, Rohit Prabhavalkar, Kanishka Rao, Wei Li, An-
ton Bakhtin, and Ian McGraw, “Streaming small-footprint key-
word spotting using sequence-to-sequence models,” ASRU,
2017.

[19] Martin Jansche, “Computer-aided quality assurance of an ice-
landic pronunciation dictionary,” in LREC, 2014.

[20] Chanwoo Kim, Ananya Misra, Kean Chin, Thad Hughes, Arun
Narayanan, Tara Sainath, and Michiel Bacchiani, “Gener-
ation of large-scale simulated utterances in virtual rooms to
train deep-neural networks for far-field speech recognition in
Google Home,” Interspeech, 2017.

[21] Norman P. Jouppi et al, “In-datacenter performance analysis
of a tensor processing unit,” SIGARCH Comput. Archit. News,
2017.

[22] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew Senior, and Koray Kavukcuoglu, “Wavenet: A generative
model for raw audio,” CoRR, 2016.

6175

		2019-03-18T11:09:31-0500
	Preflight Ticket Signature

