
INVESTIGATION OF SEQUENCE-LEVEL KNOWLEDGE DISTILLATION METHODS FOR
CTC ACOUSTIC MODELS

Ryoichi Takashima, Li Sheng, and Hisashi Kawai

National Institute of Information and Communications Technology (NICT), Japan

ABSTRACT

This paper presents knowledge distillation (KD) methods for train-
ing connectionist temporal classification (CTC) acoustic models. In
a previous study, we proposed a KD method based on the sequence-
level cross-entropy, and showed that the conventional KD method
based on the frame-level cross-entropy did not work effectively for
CTC acoustic models, whereas the proposed method improved the
performance of the models. In this paper, we investigate the im-
plementation of sequence-level KD for CTC models and propose a
lattice-based sequence-level KD method. Experiments investigating
model compression and the training of a noise-robust model using
the Wall Street Journal (WSJ) and CHiME4 datasets demonstrate
that the sequence-level KD methods improve the performance of
CTC acoustic models on both two tasks, and show that the lattice-
based method can compute the sequence-level KD more efficiently
than the N-best-based method proposed in our previous work.

Index Terms— Speech recognition, acoustic model, connec-
tionist temporal classification, knowledge distillation

1. INTRODUCTION

Acoustic models based on connectionist temporal classification
(CTC) [1, 2] have been widely studied [3, 4, 5, 6, 7, 8, 9, 10] as
alternatives to the conventional deep neural network (DNN)-hidden
Markov model (HMM) hybrids for automatic speech recognition
(ASR) systems. As CTC does not assume the presence of frame-
level labels (i.e., alignment information) and trains a recurrent neural
network (RNN) that directly estimates the label sequence from the
input sequence, it does not require either the alignment information
for training or the conversion of frame-level output into a label
sequence for decoding. In addition, DNN-HMM uses temporally
short labels (e.g., state of a triphone HMM), whereas CTC can deal
with temporally long labels (e.g., monophone, character, and word).
Based on the above features, CTC has been used for tasks such as
end-to-end ASR, which does not use any dictionaries or language
models [9, 10], and acoustic event detection [11, 12].

Knowledge distillation (KD) [13, 14], also known as teacher-
student training, is a method for training neural networks. KD
trains a model (called the student model) using the outputs of an-
other model (called the teacher model) as training labels, with the
aim of training the student model to have similar performance to
the teacher’s. KD is often used for model compression, where
a larger and higher-performance model and a smaller and lower-
performance model are used as the teacher and student models,
respectively [15, 16, 17, 18]. There have also been studies on the
training of noise-robust acoustic models based on KD [19, 20, 21].

The work was performed while Ryoichi Takashima was at NICT. He is
currently with Hitachi Ltd. (E-mail: ryoichi.takashima.dh@hitachi.com)

These methods use parallel training data, which consist of clean
speech and noisy speech data, and train a student model using the
noisy speech and a teacher model using the clean speech (details
are described in Sec. 4). It has been reported that the student model
trained using KD exhibit better performance than the model trained
in the conventional multi-condition framework.

KD is known to be effective for ASR tasks using DNN-HMM
hybrid models. However, [22] reported that KD degrades the per-
formance of CTC acoustic models. In our previous study [23],
therefore, we investigated KD methods for CTC acoustic models,
and found that the conventional KD method based on frame-level
cross-entropy (CE) worsened the performance of student CTC mod-
els, whereas the proposed sequence-level KD method based on
sequence-level CE improved the performance.

In our previous work, we proposed an N-best-based approach to
implement the sequence-level KD method. As that approach incurs
N times the computational load for training (where N is the number
of hypotheses to be used) compared with conventional CTC training,
we only evaluated the proposed method on one model compression
task under one condition (N=10). The advances reported in this
paper over our previous work are as follows:

• We evaluate the N-best-based approach with more hypothe-
ses (N=50) by implementing it such that N computations are
performed in parallel on a general-purpose GPU.

• We propose a lattice-based approach for implementing the
sequence-level KD more efficiently.

• We evaluate our methods on not only a model compression
task but also a noise-robust model training task.

In the remainder of this paper, we explain the conventional methods
and our proposed sequence-level KD methods in Sec. 2 and Sec. 3,
respectively, and present the experimental results and conclude our
work in Sec. 4 and Sec. 5, respectively.

2. RELATED WORK

2.1. Connectionist temporal classification

In the CTC framework [1], a sequence of labels estimated for each
frame (called a ‘path’ and denoted as π) is converted into a label
sequence (denoted as l) by deleting repeated labels and blank labels
(i.e., “no label”). We call this conversion “CTC mapping” under the
function B, where l = B(π). The conditional probability of the label
sequence l given the input sequence x is defined as the sum of the
probabilities of all possible corresponding paths:

p(l|x) =
∑

π∈B−1(l) p(π|x). (1)

The CTC model is trained by maximizing the likelihood, that is,
minimizing the loss function LCTC, which is defined as

LCTC = −
∑

(x,l)∈Z ln p(l|x) =
∑

(x,l)∈Z FCTC(l|x), (2)

6156978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

where Z denotes the training dataset and FCTC(l|x) = − ln p(l|x)
is the local loss, defined for explanation in Sec. 3. The derivative of
LCTC with respect to frame-level output yt

k for a label k at frame t,
which is required for backpropagation, is computed as follows:

∂LCTC

∂yt
k

= − 1
p(l|x)

1
yt
k

∑
π:(B(π)=l,πt=k) p(π|x), (3)

where
∑

π:(B(π)=l,πt=k) p(π|x) expresses the sum of the probabil-
ities of all paths satisfying B(π) = l and πt = k. This sum of
probabilities is efficiently computed using the forward-backward al-
gorithm:∑

π:(B(π)=l,πt=k) p(π|x) =
∑

s:(ls=k)
αt(s)βt(s)

yt
s

, (4)

where αt(s) and βt(s) denote the forward and backward probabil-
ities, respectively, of the path passing through the s-th label in l at
the t-th frame. s : (ls = k) denotes the position of label k in l. For
details of the forward-backward algorithm, see [1].

2.2. Knowledge distillation

KD [14] is a method for training neural networks. The main idea of
KD is to train a student model with the outputs of a teacher model
used as training labels (often called soft labels) instead of the correct
binary labels. In the KD framework, a teacher model is first trained
using the correct labels. Using the outputs (i.e., probability distribu-
tion) from the teacher model corresponding to the training data, the
student model is then trained under the CE criteria as follows:

LKD = −
∑

l ptea(l|x) ln pstu(l|x), (5)

where ptea(l|x) denotes the posterior probability of label l given
input x estimated by the teacher model (i.e., the output of the teacher
model) and pstu(l|x) is that estimated by the student model.

In previous studies [15, 16, 17, 18], Eq. (5) is calculated for each
frame, and the KD is applied to DNN-HMM hybrid models. We re-
fer to this original KD version as ‘frame-level KD’. There are also
studies in which the KD technique is used for sequence training,
such as attention model [24, 25] and maximum mutual information
(MMI)-based training [26, 27]. In these methods, the student model
is trained by minimizing the CE between the probability distribu-
tions of the label sequences on a teacher model and on a student
model. We refer to this KD approach as ‘sequence-level KD’.

3. SEQUENCE-LEVEL KD FOR CTC ACOUSTIC MODELS

3.1. Overview

Figure 1 shows an overview of sequence-level KD for CTC acoustic
models. Following some relevant studies [24, 26, 27], we extract
the hypotheses of the label sequence and their posterior probabilities
for each training sample as estimated by an already-trained teacher
CTC model. Using the hypotheses and posterior probabilities, we
then train a student CTC model under sequence-level CE criteria:

LCTC−KDseq = −
∑

x∈Z

∑
h∈H ptea(h|x) ln pstu(h|x). (6)

Here, h denotes a hypothesis of the label sequence in the set of all
possible hypotheses H. ptea(h|x) and pstu(h|x) are the posterior
probabilities of hypothesis h estimated by the teacher CTC model
and the student CTC model, respectively. As Eq. (6) can be ex-
pressed as

LCTC−KDseq =
∑

x∈Z

∑
h∈H ptea(h|x)FCTC(h|x), (7)

Training
input

Output

Teacher model Student model

minimize
sequence-level CE

CTC mapping

Probability distribution
of label sequence

probability

hypothesis of label sequence

probability

hypothesis of label sequence

Probability distribution
of label sequence

CTC mapping

Fig. 1. Overview of sequence-level KD for CTC acoustic models

the sequence-level KD criteria for the CTC model can be summa-
rized as the weighted mean of the original CTC loss regarding each
hypothesis of the label sequence. Because it is unrealistic to extract
ptea(h|x) for all possible hypotheses, we must then approximate the
hypothesis space H as a limited hypothesis space. In this study, we
use N-best-based approximation and lattice-based approximation.

3.2. N-best-based sequence-level KD

N-best-based sequence-level KD was first proposed in [24], and was
applied to the CTC training framework in our previous study [23]. In
N-best-based KD, we approximate Eq. (7) using the N-best hypothe-
ses, that is, the N hypotheses having the highest posterior probabil-
ities:

L̃CTC−KDNbest =
∑

x∈Z

∑N
n=1 p̃tea(hn|x)FCTC(hn|x). (8)

Here, hn denotes the n-th hypothesis in the N-best hypotheses, and
p̃tea(hn|x) denotes its posterior probability, normalized so that the
sum equals 1:

p̃tea(hn|x) = ptea(hn|x)∑N
n=1 ptea(hn|x) . (9)

The derivative with respect to yt
k, which is required for backpropa-

gation, is computed as follows:

∂L̃CTC−KDNbest

∂yt
k

= −
∑N

n=1 p̃tea(hn|x) 1
pstu(hn|x)

1
yt
k

∑
π:(B(π)=hn,

πt=k)

p(π|x). (10)

From Eqs. (2), (3), (8), and (10), we can implement the N-
best-based KD in the following way: (i) compute FCTC(hn|x) or∑

π:(B(π)=hn,πt=k) p(π|x) for each of the N-best hypotheses us-
ing the forward-backward algorithm from conventional CTC train-
ing, (ii) compute their weighted mean according to the probabilities
p̃tea(hn|x). Although it is relatively easy to implement the N-best-
based KD using any tools with a CTC-training function (e.g., Ten-
sorflow [28] or CNTK [29]), this approach incurs N times the com-
putational cost of conventional CTC training. As we can compute
FCTC or its derivative for each hypothesis independently, we can
implement N computations in parallel on a general-purpose GPU.
However, using too many hypotheses may overwhelm the GPU cores
or memory.

6157

T

A

C

… …

T

A

C

… …T

U

C

… …

T

A … …

Normal CTC training:
Execute forward-backward
calculation once on correct
label sequence.

N-best-based KD:
Execute forward-backward
calculation N times on
N-best hypotheses.

<s>

C

A

U

T </s>

T

A … …

A… …

C … … Lattice-based KD:
Execute forward-backward
calculation once on
a hypothesis graph.

Fig. 2. Forward-backward computations of normal CTC training, N-
best-based KD, and lattice-based KD. Black and white circles denote
blank and non-blank labels, respectively.

3.3. Lattice-based sequence-level KD

Because the N-best hypotheses tend to have similar label sequences,
performing the forward-backward computation independently for
each hypothesis often involves redundant computations. In the
lattice-based KD framework, for more efficient computations, we
form a graph of the hypotheses (i.e., a lattice), and perform the
forward-backward computation on the lattice. Figure 2 illustrates the
forward-backward computations of normal CTC training, N-best-
based KD, and lattice-based KD. In the figure, the three hypotheses
“CAT,” “CUT,” and “AT” are estimated from a sample uttered
“CAT.” Whereas N-best-based KD performs the forward-backward
computation for each hypothesis, lattice-based KD performs one
computation for common paths (e.g., ⟨s⟩ → ‘C’ and ‘T’ → ⟨/s⟩,
where ⟨s⟩ and ⟨/s⟩ denote the start state and end state, respectively).

The forward-backward algorithm on a lattice has been used
in [27]. In our proposed approach, we expand the lattice-space
forward-backward algorithm to consider the insertion of blank la-
bels between non-blank labels for application to CTC models. First,
for computational efficiency, we set the index to each state such
that the lattice has no transition from a state having a larger index
to that having a smaller index. For the example in Figure 2, we
set the index as [0, 1, 2, 3, 4, 5] = index([⟨s⟩,C,U,A,T, ⟨/s⟩]),
where index(∗) denotes the state indexes. Similar to the forward-
backward algorithm in the conventional CTC training, we then
expand the lattice by inserting blanks between states such as
[0, 1, . . . , 9, 10] = index([⟨s⟩,−,C,−,U,−,A,−,T,−, ⟨/s⟩]),
where ‘-’ denotes a blank label. When we denote the state index
of the original lattice by n = 0, . . . , N , in the expanded lattice,
indexes 2n and 2n + 1 are assigned to non-blank labels and blank

labels, respectively.

Computation of forward probability

We now describe the computation of the forward probability αt(s).
Initially, we define the forward probability at t = 0 as follows:

αt(0) = 0, αt(1) = yblk
t

αt(2n) = y
lab(n)
t ptea(n|0), αt(2n+ 1) = 0,

(11)

where yblk
t denotes the network output corresponding to the blank,

and y
lab(n)
t denotes that corresponding to the label of state n. State 0

is the start state ⟨s⟩, and its forward probability is defined as αt(0) =
0 because it does not have a label. ptea(n|m) denotes the transition
probability from state m to state n, that is, the arc weight in the
lattice estimated by the teacher model. In the cases of m = 0 (i.e.,
transition from start state) and n = N (i.e., transition to end state
⟨/s⟩), ptea(n|m) takes binary values.

Next, we define αt(s) for t > 0 as follows:

αt(0) = 0, αt(1) = yblk
t αt−1(1)

αt(2n) = y
lab(n)
t

(
αt−1(2n)

+
∑

m∈1:n−1
lab(n)̸=lab(m)

ptea(n|m)(αt−1(2m) + αt−1(2m+ 1))

+
∑

m∈1:n−1
lab(n)=lab(m)

ptea(n|m)αt−1(2m+ 1)

)

αt(2n+ 1) = yblk
t (αt−1(2n) + αt−1(2n+ 1)). (12)

The differences from normal CTC training are as follows: (i) there
are multiple states transitioning to state 2n (corresponding to arcs
of lattice), and so we must sum the previous forward probabilities
over m ∈ 1 : n − 1, (ii) the forward probabilities corresponding to
the transition to 2n from 2m and 2m+ 1 are weighted by transition
probability ptea(n|m), and this means that we perform the calcu-
lation of the weighted mean in the sequence-level KD framework
partially for each state transition.

Computation of backward probability

We now describe the computation of the backward probability βt(s).
Initially, we define the backward probability for the last frame t =
T − 1 as follows:

βt(2n) = y
lab(n)
t ptea(N |n)

βt(2n+ 1) = yblk
t ptea(N |n), (13)

where ptea(N |n) denotes the transition probability to the end state
and has a binary value (ptea(N |N) = 0).

For t < T − 1, we define βt(s) as follows:

βt(2n) = y
lab(n)
t

(
βt+1(2n) + βt+1(2n+ 1)

+
∑

m∈n+1:N−1
lab(n)̸=lab(m)

ptea(m|n)βt+1(2m)

)
βt(2n+ 1) = yblk

t

(
βt+1(2n+ 1)

+
∑

m∈n+1:N−1 ptea(m|n)βt+1(2m)

)
. (14)

6158

Table 1. Results of the model compression task using WSJ dataset
Acoustic KD WER w/ LM PER w/o LM fps. in
Model method dev93 eval92 dev93 eval92 training

teacher CTC none 17.03 10.79 21.19 15.38 1306.3
none 20.31 13.59 29.76 24.16 2318.7
1-best 21.86 14.85 29.87 24.01 1982.0

student CTC 10-best 20.46 13.47 28.22 22.46 2324.6
50-best 19.99 12.94 28.17 22.13 1288.9
lattice 20.59 13.52 28.04 21.94 1879.9
frame 26.60 17.54 37.94 33.06 4350.1

4. EXPERIMENTS

4.1. Experiments on a model compression task

In the experiment on a model compression task, a smaller student
model was trained based on KD with a larger teacher model. We
used a bidirectional long short-term memory (LSTM) [30] having
five hidden layers and 320 memory cells in each layer as the teacher
CTC model, and a unidirectional LSTM having three hidden layers
and 160 memory cells as the student CTC model. The experiment
was conducted using the Wall Street Journal (WSJ) dataset [31], with
“WSJ0” (known as “train si84” in the Kaldi recipe [32]) taken as the
training set and “dev93” and “eval92” used for evaluation. We ex-
tracted 40-dimensional mel-filterbank features with their first- and
second-order derivatives as acoustic features, and defined the target
labels to include 69 phonemes, two noise marks, and a blank. We
set the initial and final learning rates to 0.0004 and 0.000004, re-
spectively, and decreased the learning rate exponentially on each of
15 epochs. The training was executed on an NVIDIA Tesla P100
PCIe 16 GB GPU. To train and evaluate the CTC models, we used
the EESEN toolkit [5]; this was also used to implement both the
frame-level and sequence-level KD methods. In the sequence-level
KD methods, we extracted the N-best hypotheses and lattices using
the WFST beam-search [33]. In this process, we used only the to-
ken WFST (defined as T.fst in EESEN), which maps a sequence of
frame-level CTC labels to a label sequence (i.e., B in Sec. 2.1). Note
that we did not use a lexicon or language model in this process.

Table 1 presents the experimental results. When evaluating the
word error rate (WER [%]), we used a lexicon and a language model.
We used the CMU dictionary as the lexicon and the 20,000-word-
vocabulary WSJ pruned language model, known as “lm tgpr” in the
Kaldi recipe. When evaluating phone error rate (PER [%]), we did
not use either a lexicon or language model. The results in this table
indicate that the conventional frame-level KD worsened the perfor-
mance of the student CTC model compared with the CTC model
trained without KD. N-best-based sequence-level KD improved the
performance when N was greater than 10, with more hypotheses
generating better performance. Lattice-based KD achieved the best
performance in evaluating PER without a lexicon or language model;
however, it performed almost the same as the CTC model without
KD in evaluating WER with a lexicon and language model.

Frames per second (fps) denotes the number of frames processed
in one second in training, with a higher fps representing faster train-
ing. With N = 50, N-best-based KD increased the training time
by a factor of two compared with the normal CTC training without
KD; this was caused by a lack of GPU cores. However, the lattice-
based KD broadly suppressed this increase in training time. This
result means that lattice-based KD can compute the sequence-level
KD more efficiently than N-best-based KD.

Teacher CTC model
(already-trained using

clean speech and
correct label sequence)

output

clean training speech noisy training speech
mixed with
noise data

Student CTC model

outputminimize
sequence-level CE

Fig. 3. Training of noise-robust acoustic model using KD

Table 2. Results of training the noise-robust model using CHiME4
dataset

Acoustic KD WER w/ LM PER w/o LM
Model method dt05 simu et05 real dt05 simu et05 real

none 24.99 54.93 37.65 59.39
student CTC 50-best 22.13 52.45 33.63 55.82

lattice 22.99 54.05 33.98 56.27

4.2. Experiments on training noise-robust acoustic model

Figure 3 shows an overview of the experiment conducted to train a
noise-robust acoustic model. Following [21], we used parallel train-
ing data consisting of clean speech and noise-added data. First, we
trained the teacher model using only the clean speech and the cor-
rect label sequences. We then input the clean speech into the teacher
model and extracted the hypotheses and their probabilities. To train
the student model with KD, instead of clean speech, we used the
noise-added data and hypotheses extracted from teacher model.

We used a bidirectional LSTM having five hidden layers and
160 memory cells in each layer for both the teacher CTC and stu-
dent CTC. We used the CHiME4 dataset [34] in this experiment.
The training dataset “tr05 simu noisy” in CHiME4 contains noisy
data simulated by adding noise (recorded on the bus, in a cafe, in
pedestrian areas, and at street junctions) to “WSJ0.” Therefore, we
constructed parallel training data by using “WSJ0” as clean data and
“tr05 simu noisy” as noisy data. For the evaluation, we used the
noisy datasets “dt05 simu noisy” and “et05 real isolated 1ch track”
from CHiME4. The other experimental conditions were the same as
described in Sec. 4.1.

Table 2 presents the results. “KD method is none” denotes
conventional multi-condition training, that is, we trained the CTC
model using “tr05 simu noisy” and the correct label sequences. As
shown in this table, both the N-best-based KD and lattice-based
KD methods achieved lower PER and WER than the conventional
multi-condition training.

5. CONCLUSION

We have confirmed the effectiveness of both the N-best-based and
lattice-based KD methods on the experiments we conducted. Fur-
thermore, the lattice-based KD can compute the sequence-level KD
more efficiently than the N-best-based KD. However, there were
some cases for which sequence-based KD made no significant im-
provement in terms of WER with language models, even though it
significantly improved the PER without language models. There-
fore, we will investigate how to integrate a language model into the
CTC acoustic model trained using KD. In addition, we will further
study the application of related techniques (e.g., temperature) to the
sequence-level KD.

6159

6. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent neural net-
works,” in ICML2006. ACM, 2006, pp. 369–376.

[2] Alex Graves and Navdeep Jaitly, “Towards end-to-end speech
recognition with recurrent neural networks.,” in ICML2014,
2014, vol. 14, pp. 1764–1772.

[3] Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise Bea-
ufays, “Fast and accurate recurrent neural network acoustic
models for speech recognition,” in Interspeech. ISCA, 2015,
pp. 1468–1472.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-
hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and man-
darin,” in ICML2016, 2016, pp. 173–182.

[5] Yajie Miao, Mohammad Gowayyed, and Florian Metze,
“Eesen: End-to-end speech recognition using deep rnn mod-
els and wfst-based decoding,” in ASRU2015. IEEE, 2015, pp.
167–174.

[6] Naoyuki Kanda, Xugang Lu, and Hisashi Kawai, “Maximum-
a-posteriori-based decoding for end-to-end acoustic models,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 5, pp. 1023–1034, 2017.

[7] Suyoun Kim, Takaaki Hori, and Shinji Watanabe, “Joint ctc-
attention based end-to-end speech recognition using multi-task
learning,” in ICASSP2017. IEEE, 2017, pp. 4835–4839.

[8] Takaaki Hori, Shinji Watanabe, Yu Zhang, and William
Chan, “Advances in joint ctc-attention based end-to-end speech
recognition with a deep cnn encoder and rnn-lm,” in Inter-
speech. ISCA, 2017, pp. 949–953.

[9] Kartik Audhkhasi, Brian Kingsbury, Bhuvana Ramabhadran,
George Saon, and Michael Picheny, “Building competi-
tive direct acoustics-to-word models for english conversational
speech recognition,” in ICASSP2018. IEEE, 2018, pp. 4759–
4763.

[10] Amit Das, Jinyu Li, Rui Zhao, and Yifan Gong, “Advancing
connectionist temporal classification with attention modeling,”
in ICASSP2018. IEEE, 2018, pp. 4769–4773.

[11] Yun Wang and Florian Metze, “A first attempt at polyphonic
sound event detection using connectionist temporal classifica-
tion,” in ICASSP2017, 2017, pp. 2986–2990.

[12] Hiroshi Fujimura, Manabu Nagao, and Takashi Masuko, “Si-
multaneous speech recognition and acoustic event detection
using an lstm-ctc acoustic model and a wfst decoder,” in
ICASSP2018. IEEE, 2018, pp. 5834–5838.

[13] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong, “Learn-
ing small-size dnn with output-distribution-based criteria,” in
Interspeech, 2014, pp. 1911–1914.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the
knowledge in a neural network,” in NIPS Deep Learning and
Representation Learning Workshop, 2014.

[15] Yevgen Chebotar and Austin Waters, “Distilling knowledge
from ensembles of neural networks for speech recognition,” in
Interspeech, 2016, pp. 3439–3443.

[16] Liang Lu, Michelle Guo, and Steve Renals, “Knowledge distil-
lation for small-footprint highway networks,” in ICASSP2017,
2017, pp. 4820–4824.

[17] Shinji Watanabe, Takaaki Hori, Jonathan Le Roux, and John R.
Hershey, “Student-teacher network learning with enhanced
features,” in ICASSP2017, 2017, pp. 5275–5279.

[18] Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel
Thomas, Jia Cui, and Bhuvana Ramabhadran, “Efficient
knowledge distillation from an ensemble of teachers,” in In-
terspeech, 2017, pp. 3697–3701.

[19] Jinyu Li, Rui Zhao, Zhuo Chen, Changliang Liu, Xiong Xiao,
Guoli Ye, and Yifan Gong, “Developing far-field speaker
system via teacher-student learning,” in ICASSP2018. IEEE,
2018, pp. 5699–5703.

[20] Tian Tan, Yanmin Qian, and Dong Yu, “Knowledge transfer in
permutation invariant training for single-channel multi-talker
speech recognition,” in ICASSP2018. IEEE, 2018, pp. 5714–
5718.

[21] Jaeyoung Kim, Mostafa El-Khamy, and Jungwon Lee, “Brid-
genets: student-teacher transfer learning based on recursive
neural networks and its application to distant speech recogni-
tion,” in ICASSP2018. IEEE, 2018, pp. 5719–5723.

[22] Andrew Senior, Haşim Sak, Félix de Chaumont Quitry, Tara N.
Sainath, and Kanishka Rao, “Acoustic modelling with cd-ctc-
smbr lstm rnns,” in ASRU2015. IEEE, 2015, pp. 604–609.

[23] Ryoichi Takashima, Sheng Li, and Hisashi Kawai, “An in-
vestigation of a knowledge distillation method for ctc acoustic
models,” in ICASSP2018. IEEE, 2018, pp. 5809–5813.

[24] Yoon Kim and Alexander M. Rush, “Sequence-level knowl-
edge distillation,” in EMNLP2016, 2016.

[25] Ruoming Pang, Tara N. Sainath, Rohit Prabhavalkar, Suyog
Gupta, Yonghui Wu, Shuyuan Zhang, and Chung-Cheng Chiu,
“Compression of end-to-end models,” in Interspeech 2018.
ISCA, 2018, pp. 27–31.

[26] Jeremy H. M. Wong and Mark J. F. Gales, “Sequence student-
teacher training of deep neural networks,” in Interspeech,
2016.

[27] Naoyuki Kanda, Yusuke Fujita, and Kenji Nagamatsu, “Se-
quence distillation for purely sequence trained acoustic mod-
els,” in ICASSP2018. IEEE, 2018, pp. 5964–5968.

[28] “Tensorflow,” https://www.tensorflow.org/.
[29] “CNTK,” https://github.com/Microsoft/CNTK.
[30] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term

memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[31] John Garofolo et al., “CSR-I (WSJ0) Complete LDC93S6A,”
DVD. Philadelphia: Linguistic Data Consortium, 1993.

[32] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, et al., “The
kaldi speech recognition toolkit,” in ASRU2011. IEEE Signal
Processing Society, 2011.

[33] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted finite-state transducers in speech recognition,”
Computer Speech & Language, vol. 16, no. 1, pp. 69–88, 2002.

[34] Emmanuel Vincent, Shinji Watanabe, Aditya Arie Nugraha,
Jon Barker, and Ricard Marxer, “An analysis of environment,
microphone and data simulation mismatches in robust speech
recognition,” Computer Speech & Language, 2016.

6160

		2019-03-18T10:58:04-0500
	Preflight Ticket Signature

