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ABSTRACT

In this paper, we present a Sequence-to-Sequence Attentional
Siamese Neural Network (Seq2Seq-ASNN) that leverages
temporal alignment information for end-to-end speaker ver-
ification. In prior works of speaker discriminative neural
networks, utterance-level evaluation/enrollment speaker rep-
resentations are usually calculated. Our proposed model,
utilizing a sequence-to-sequence (Seq2Seq) attention mech-
anism, maps the frame-level evaluation representation into
enrollment feature domain and further generates an utterance-
level evaluation-enrollment joint vector for final similarity
measure. Feature learning, attention mechanism, and met-
ric learning are jointly optimized using an end-to-end loss
function. Experimental results show that our proposed model
outperforms various baseline methods, including the tradi-
tional i-Vector/PLDA method, multi-enrollment end-to-end
speaker verification models, d-vector approaches, and a self
attention model, for text-dependent speaker verification on a
Tencent internal voice wake-up dataset.

Index Terms— End-to-end speaker verification, text-
dependent, Siamese neural networks, Seq2Seq attention

1. INTRODUCTION

Speaker verification is the process of verifying, based on a
speaker’s enrolled utterances, whether an evaluation utter-
ance belongs to that speaker. It can be categorized into text-
dependent and text-independent tasks [1]. In text-dependent
systems, transcripts of enrollment are constrained to a specific
phrase [2], which is not the case in text-independent systems.
Because of the constraint of the phonetic variability, text-
dependent speaker verification usually achieves robust verifi-
cation results with very short enrollment utterances. With the
proliferation of smart home/vehicles and mobile applications,
human-machine interactions through voice command are be-
coming widespread where text-dependent speaker verification
is essential. For example, an ideal application scenario would
be speech assisted devices continuously listening for specific
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wake-up keywords only by a certain speaker, where text-
dependent speaker verification is necessary for personalized
service and unauthorized usage prevention.

Traditional techniques for text-dependent speaker ver-
ification include GMM-UBM [3], GMM-SVM [4], and i-
Vector/PLDA [5]. Recently, inspired by the huge success of
applying Deep Neural Networks (DNN) in Automatic Speech
Recognition (ASR) [6], deep learning based text-dependent
speaker verification has become popular. In [2, 7], speaker
discriminative DNNs are investigated to extract frame-level
features, which are treated with equal importance and aggre-
gated into reliable utterance-level speaker representations
called d-vectors. Utterance-level features from the test
speaker and enrolled speakers are then scored using a pre-
defined cosine distance [8] or PLDA [9] similarity measure.

The end-to-end text-dependent speaker verification sys-
tem has also attracted much attention due to its simple train-
ing procedure and effective inference scheme. In [10], the
last frame output of LSTM layer is defined as the d-Vector
for evaluation and enrollment representations, respectively,
which are then passed to calculate cosine distance and logistic
regression for the similarity score. In [11], a normalized score
of each LSTM frame is calculated and all frames are weighted
averaged to generate the d-Vector. Similar attention mecha-
nism is applied to a triplet loss model in [12]. Another atten-
tion based model in [13] takes the additional phonetic model
information to learn the attention weights for each evaluation
and enrollment. However, in [11, 12, 13], evaluation and en-
rollment implement their own attention mechanism and no
evaluation-enrollment joint information is utilized.

For a better end-to-end training, the mismatch in the pho-
netic contexts and duration between the evaluation and enroll-
ment can be resolved by a sequence-to-sequence (Seq2Seq)
temporal alignment. Original Seq2Seq attention is widely
used in machine translation [14] and image captioning [15],
where alignments are learned between source and target se-
quences. This motivates us to learn temporal alignment be-
tween enrollment and evaluation utterances.

In this paper, we propose a Seq2Seq style attentional
Siamese neural network model, named Seq2Seq-ASNN, for
the above purpose. A Siamese neural network consists of
two towers with identical structures for encoding individual
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input features. It has been successfully applied to many im-
age/video/audio tasks such as face verification [16], object
tracking in videos [17], and sound search by vocal imitation
[18, 19]. The proposed Siamese neural network encodes an
enrollment and an evaluation utterance with separate towers.
Each tower is composed of a convolutional layer followed
by a recurrent layer to extract the temporal-frequency fea-
ture representation. Then the extracted frame-level features
from the two towers are weighted aligned and combined into
an utterance-level evaluation-enrollment joint vector by an
Seq2Seq attention mechanism. The dual-tower feature ex-
traction, Seq2Seq attention mechanism, and the verification
scoring are jointly trained by optimizing the end-to-end loss.

The rest of the paper is organized as follows: We describe
the proposed Seq2Seq-ASNN in Section 2. The experimental
setup is summarized in Section 3. We present the evaluation
results in Section 4 and conclude this paper in Section 5.

2. THE PROPOSED SEQ2SEQ-ASNN

The typical speaker verification protocol includes three
phases: training, enrollment, and evaluation [10]. In the
training phase, our proposed network learns to extract in-
ternal speaker representations from a pair of utterances. The
encoding network includes two parts, a CRNN (CNN + GRU)
and an attention network as shown in Figure 1. After feature
extraction by the CRNN, the Seq2Seq attention mechanism
takes frame-level features to compute attention weights for
temporal alignment between evaluation and enrollment rep-
resentations. Finally, two fully connected layers produce a
binary decision on whether the two utterances belong to the
same speaker. All the parameters in the whole system are
jointly trained using an end-to-end criterion on positive (i.e.,
two input utterances share the same speaker identity, a.k.a.
target samples in testing phase) and negative (i.e., two in-
put utterances belong to different speakers, a.k.a. impostor
samples in testing phase) pairs, as described in Section 2.5.

While the attention model in [13] is learned based on indi-
vidual utterance, our attention model is trained in a Seq2Seq
manner where both evaluation and enrollment frame-level
features are required to produce an utterance-level joint vec-
tor. Besides, although the enrollment and verification phases
are implemented in one-shot, enrollment frame-level features
could still be extracted and saved beforehand for real-time
verification deployment. Finally, in end-to-end settings like
[10] and [13], the evaluation and enrollment branches are
combined at the “Metric Learning” stage, while our proposed
method couples the two branches at the “Attention Mecha-
nism” stage to generate the utterance-level joint vector.

2.1. Preprocessing

The evaluation and enrollment utterances are sampled at 16
kHz and recorded for shorter than 3 seconds. Each utterance
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Fig. 1. Architecture of the proposed Seq2Seq-ASNN model
for end-to-end speaker verification.

is zero-padded in the end to maintain 3 seconds long, and
then converted to a 128-band log-mel spectrogram with 32
ms analysis window and 16 ms overlap, resulting in a dimen-
sionality of 128 frequency bins by 188 time frames.

2.2. Feature Learning

Each tower of the Siamese network comprises of a convo-
lutional layer and a recurrent layer. The model parameters
are shown on the upper right side of Figure 1. The convolu-
tional layer has 12 filters with Rectified Linear Unit (ReLU)
activations and a receptive field of 5 × 5, followed by a
2(frequency) × 5(time) max-pooling. For each time step,
we concatenate the features across different channels, then
project to a 48 dimensional layer, and finally feed into a GRU
layer with 32 hidden units. Up to now, we get the frame-level
features for both evaluation and enrollment utterances.

2.3. Seq2Seq Attention Mechanism

Rather than averaging the frame-level CRNN features to
produce an utterance-level representation for enrollment
and evaluation respectively, we adopt Seq2seq attention
mechanism to first align these two frame-level feature se-
quences. Particularly, each enrollment frame can be aligned
to a weighted average of evaluation frames. This average
representation is then concatenated with the original enroll-
ment feature to form a unified feature sequence of the two
utterances, which is then averaged to generate an evaluation-
enrollment joint vector.

The internal structure for the proposed Seq2Seq attention
mechanism is shown in Figure 2. hs and ht are the evalu-
ation and enrollment frame-level speaker feature sequences,
respectively. Our goal is to derive a context vector sequence
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ct that captures evaluation side information that is the most
enrollment-relevant. By defining an alignment score between
the s-th frame of the evaluation and the t-th frame of the en-
rollment as the following:

score(ht,hs) = h>
t hs, (1)

we can find the frame-level relevance between the two se-
quences. The higher alignment score indicates a larger weight
of that evaluation frame contributing to the context vector.
The variable-length alignment vector αt can be realized by
a softmax function as:

αt(s) =
exp(score(ht,hs))∑S
s′ exp(score(ht,hs′ ))

, (2)

where the size of αt(s) equals the number of time steps on
the evaluation side. Given the alignment vector as weights,
the context vector ct is computed as the weighted average
over all the evaluation frame-level speaker vectors:

ct =

S∑
s

αt(s)hs. (3)

Hence, the context vector sequence ct has the same number
of time steps with the enrollment sequence ht. We employ
a concatenation layer to combine the information from both
vectors to produce an attentional hidden state h̃t. As such,
the frame vectors in the evaluation are automatically weighted
aligned to the highly correlated frames from the enrollment.
Finally, we average the vectors h̃t across all time steps to get a
32-d utterance-level joint vector as the output of the Seq2Seq
attention module, which contains the integrated information
from both evaluation and enrollment utterances.

2.4. Metric Learning

Instead of calculating pre-defined distances between the eval-
uation/enrollment utterance-level feature representations in
[10], we feed the joint vector learned from the Seq2Seq atten-
tion mechanism through a 2-layer Fully Connected Network
(FCN) to predict the evaluation-enrollment pair similarity.
The FC1 layer consists of 108 hidden units using rectified
linear unit (ReLU) nonlinearity, followed by a sigmoid out-
put layer of only one neuron for verification score prediction.
The similarity prediction is learned jointly with the feature
representations and attention mechanism, likely leading to a
better speaker verification performance.

2.5. Training

For the end-to-end training scheme, the ground truth labels
are 1 for positive pairs and 0 for negative pairs. The loss
function to minimize is the binary cross-entropy between the
network output and the binary label. The learning rate of
stochastic gradient descent optimization is 0.1 with a decay
rate 0.001 and a momentum constant of 0.9. The batch size is
256. Early stopping based on validation loss with the patience
of 3 epochs is employed for training termination.
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Fig. 2. Structure of the Seq2Seq attention mechanism. Each
enrollment frame is aligned to a weighted average of evalua-
tion frames.

3. EXPERIMENTAL SETUP

3.1. Dataset

We use a Tencent wake-up word dataset in our experiments.
It contains 3,324 speakers of equal gender representation.
30 utterances of the keyword “9420” spoken in Chinese are
recorded for each speaker. We split the entire dataset into
2,570, 635, and 119 speakers for training, validation, and
testing, respectively. By pairing utterances from the same
speaker as positive samples and from different speakers as
negative samples, a total number of 74k positive samples and
74k negative samples are created for training. This number
is about 18k for validation. In the testing phase, there are in
total 12k target and impostor samples.

3.2. Baseline Methods

We compare the proposed method with several baseline
speaker verification approaches.

(1) Traditional i-Vector/PLDA method [5] that adopts
512-d i-vectors and reduces to 200-d by LDA. And then a
PLDA model with 150 latent identity factors is trained.

(2) Google’s end-to-end text-dependent speaker verifica-
tion system (Google-E2E) [10] that receives an evaluation
and multiple enrollments (here we choose three) as inputs.
It first extracts features from the evaluation and enrollment
utterances by a LSTM layer with 504 hidden neurons, then
calculates the cosine similarity between the evaluation repre-
sentation and the averaged enrollment representation, which
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is finally fed into a logistic regression to generate a similar-
ity score. For the input log-mel spectrogram dimensional-
ity, we perform experiments with both Google-E2E-1 with
40(frequency)×80(time) as described in [10] and Google-
E2E-2 with 128(frequency) × 188(time), which has the
same input dimensionality as Seq2Seq-ASNN.

(3) The d-Vector approach [2]. An utterance is classi-
fied to one of 2,570 training speakers with a softmax output.
The last hidden layer activation is used as the evaluation and
enrollment d-Vector, respectively. Then cosine distance be-
tween the two parties is calculated. Distances lower than the
threshold suggest positive pairs, otherwise negative. Another
improvement further applies the Cosface normalization to the
last hidden layer together with a large margin loss [20].

(4) Self attention. Unlike [11], we apply a more compli-
cated self attention described in [21] to replace the Seq2Seq
attention, named Self-ASNN. It implements individual atten-
tion for evaluation and enrollment separately. Weights are
calculated as activations of a fully connected layer following
GRU output across frames. Re-weighted frames are obtained
by multiplying weights with GRU outputs, which are further
averaged into an utterance-level feature vector for each tower.
Finally evaluation and enrollment feature vectors are concate-
nated and fed into the FCN for similarity measure.

(5) Comparison of Seq2Seq-ASNN against itself by grad-
ually removing attention and GRU layers. Siamese-CNN-
GRU removes the attention layer, concatenates the last frame
GRU output from evaluation and enrollment, which is then
fed into FCN for similarity measure. Siamese-CNN removes
both GRU and attention layers but employs three convolu-
tional layers, maintaining a comparable model complexity
with Seq2Seq-ASNN and Siamese-CNN-GRU.

4. EXPERIMENTAL RESULTS

We employ Equal Error Rate (EER) to evaluate the speaker
verification performance. We also report the model size in
terms of the number of trainable parameters for deep learn-
ing models. Table 1 shows EER and model size comparisons
among the proposed Seq2Seq-ASNN and baseline methods.

The traditional i-Vector/PLDA method achieves the best
result among all baseline approaches. Unlike data driven deep
learning based models, i-Vector/PLDA is robust under the cir-
cumstance of limited number of training speakers. However,
Seq2Seq-ASNN outperforms the best baseline by a relative
EER decrease of 35.7%. This indicates the effectiveness of
the proposed Siamese neural network structure as well as the
Seq2Seq attention mechanism. It may suggest that if more
training data is available, a more significant performance im-
provement of Seq2Seq-ASNN could be achieved.

With a smaller model size, Seq2Seq-ASNN outperforms
both Google-End2End and d-Vector approaches. For Google-
End2End models, we find the benefit from a larger input
spectrogram resolution. However, even with three enroll-

Table 1. EER and model size (# trainable parameters) com-
parisons of Seq2Seq-ASNN with various baseline systems.

Configuration Model Size EER

i-Vector/PLDA - 0.56%
Google-End2End-1 (40× 80) 1.1M 4.56%

Google-End2End-2 (128× 188) 1.1M 4.28%
d-Vector (w/o Cosface) 0.3M 8.00%
d-Vector (w/ Cosface) 0.3M 1.50%

Self-ASNN 149.7k 1.73%

Siamese-CNN 146.7k 3.40%
Siamese-CNN-GRU 148.4k 1.87%

Seq2Seq-ASNN 149.7k 0.36%

ments likely for a better temporal feature coverage, Google-
End2End still performs worse than Seq2Seq-ASNN, which
requires one enrollment. This may suggest that in Google-
End2End models averaged enrollment representation makes
the temporal mapping with the evaluation utterance even
harder to capture. Also it confirms the effectiveness of the
Seq2Seq attention mechanism. The d-Vector method, gaining
huge from the Cosface loss, is still outpaced by Seq2Seq-
ASNN. This indicates the performance of d-Vector method is
limited by the relatively smaller training set, while Seq2Seq-
ASNN learns pairwise relative speaker features which are not
directly related to absolute speaker identities.

Self-ASNN performs better than Siamese-CNN-GRU. It
suggests that frame re-weighting within evaluation and en-
rollment does have benefit. However, Seq2Seq attention still
outperforms self attention with a large margin. This indicates
that temporal alignment between enrollment and evaluation
utterance pair is essential for achieving improved speaker ver-
ification performance.

By better capturing local time-frequency features as well
as long timescale temporal evolutions, Siamese-CNN-GRU
outperforms Siamese-CNN. Furthermore, Seq2Seq-ASNN
outperforms Siamese-CNN-GRU by a decrease of EER from
1.87% to 0.36%. This suggests that Seq2Seq attention works
as expected for evaluation/enrollment temporal alignment.

5. CONCLUSIONS

In this paper, we propose a Seq2Seq-ASNN model for text-
dependent speaker verification. Seq2Seq attention maps
frame-level evaluation features into enrollment domain and
generates an utterance-level evaluation-enrollment joint vec-
tor for similarity measure. Feature extraction, attention
mechanism, and metric learning are jointly optimized in
an end-to-end manner. Experimental results show significant
improvement of Seq2Seq-ASNN against various baselines on
a Tencent wake-up word dataset. For future work, we will
evaluate our system on publicly available corpus and apply
the proposed method to text-independent speaker verification.
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