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ABSTRACT

A speaker verification system decides whether two voice seg-
ments belong to the same speaker based on a threshold. An
optimal threshold can be set if the recognition scores are well
calibrated, i.e., they represent Log–Likelihood Ratios. Lo-
gistic Regression (LogReg) is a standard approach for score
calibration. While training this discriminative model requires
labeled scores, Gaussian and non–Gaussian generative cali-
bration models have been recently proposed. They not only
have similar or better performance with respect to LogReg,
but also allow for unsupervised or semi–supervised training
of the models.
The goal of this work is to extend these models. In particu-
lar, we show that normal variance–mean mixture distributions
are able to model well–calibrated non–Gaussian distributed
scores, provided that their parameters for the target and non–
target score distributions are properly tied. As for the Gaus-
sian case, a linear calibration model can then be estimated
by computing Maximum Likelihood estimates of the distribu-
tions parameters and of the score transformation. The quality
of all these approaches has been compared on a dataset of seg-
ments of variable duration obtained by cutting the NIST 2010
evaluation test data.

Index Terms— score calibration, likelihood ratio inter-
pretation, linear score calibration models

1. INTRODUCTION

Score calibration aims at transforming the scores produced
by a system so that each score can be interpreted as the Log–
Likelihood Ratio (LLR) between the hypotheses that two
voice segments belong to the same or to different speakers.
If a score is a LLR, the optimal decision depends only on
the score, and on the prior probability of the same–speaker
(target) and different–speaker (non–target) trials.

The standard approach for score calibration is based on
discriminative prior–weighted Logistic Regression (LogReg)
[1], which optimizes the expected value of the logarithmic
proper scoring rule [2] assuming a linear calibration model.
LogReg has been widely investigated, and is routinely em-
ployed as a calibration tool in different fields [3, 4, 5, 6].

Alternative methods based on generative models have re-
cently gained interest [7, 8]. The theoretical properties of log–

likelihood ratios have been analyzed in [7] showing that, for a
score to represent a LLR, it should verify the so called “LLR
of the LLR is the LLR” property. This LLR property has
strong implications on the admissible distributions that can
generate calibrated scores. Additionally, a Maximum Likeli-
hood (ML) approach for linear calibration has been proposed,
referred to as Constrained Maximum–Likelihood Gaussian
(CMLG) calibration, based on the assumption that the scores
are Gaussian distributed. In contrast with discriminative ap-
proaches, generative calibration models allow for unsuper-
vised or semi–supervised training of calibration models. The
CMLG approach has been extended in [9] considering a set
of unlabeled scores as samples of a two–components GMM,
whose components satisfy the LLR property. The result is an
unsupervised linear score calibration model that has shown to
be effective for several tasks [10, 11, 12].

More recently, non–Gaussian generative models have
been proposed for non–linear calibration [8, 13]. In partic-
ular, [8] analyzes different models based on non–Gaussian
distributions, including T–student and Normal Inverse Gaus-
sian (NIG) distributions [14]. Rather than estimating an
explicit score mapping to fit theoretically calibrated score
distributions as in [7], this approach estimates a probabilistic
model in score space, and computes the LLRs by evaluating
the likelihood ratio between the hypotheses that a score was
generated by the target or by the non–target distribution, re-
spectively. Although good results have been obtained using
NIG score models, the approach of [8] does not guarantee
that the NIG learned transformation is monotonic, as assured
instead by CMLG.

The goal of this work is to extend CMLG [7]. We show
that normal variance–mean mixture distributions, of which
NIG is a subclass, are able to model non–Gaussian distributed
scores, provided that the parameters for the target and non–
target score distributions are properly tied. The parameters of
a linear calibration model can be estimated, as for CMLG, by
computing ML estimates of the distributions parameters and
of the score transformation.

The rest of the paper is organized as follows. Section
2 recalls the CMLG calibration approach. Section 3 high-
lights the limits of CMLG, and proposes a mixture density
model that is able to generate well–calibrated, non Gaussian–
distributed, scores. The experimental results are illustrated in
Section 4, and conclusions are given in Section 5.
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2. CMLG SCORE CALIBRATION

Since our work extends the findings of [7], in this section we
briefly recall the properties of LLRs that lead to the CMLG
score normalization model.

We consider a verification system that computes the log–
likelihood ratio of a trial as:

x = LLR(e) = log
P (e|HT ,M)

P (e|HF ,M)
, (1)

where e is the evidence associated to the trial extracted by
the recognizer (e.g., a pair of i–vector or speaker embeddings
[15, 16]), HT and HF are the target and non–target trial hy-
potheses, respectively, and M is a statistical model for e,
such as Probabilistic Linear Discriminant Analysis (PLDA)
[17, 18].

It has been shown that the log–likelihood ratio between
the likelihood of observing a particular value of x, given the
target and the non–target hypotheses, is again x [7, 19]:

x = LLR(e) = log
P (LLR(e) = x|HT ,M)

P (LLR(e) = x|HF ,M)
. (2)

The scores of a set of independent trials are well calibrated if
they approximately satisfy this constraint [7]. In the following
we will refer to (2) as the LLR property or constraint.

Let’s consider the distribution of the LLRs of the target
and non–target trials. We consider, thus, the scores as samples
of a random variableX , whose conditional distributions given
the target (T ) and the non–target (F ) classes are fX|T and
fX|F , respectively. The two distributions are closely related
because from (2) we get:

fX|T (x) = ex · fX|F (x) . (3)

If X|F is Gaussian distributed, (3) implies that also X|T
is Gaussian distributed, and that the parameters of the two
distribution are related as [7]:

fX|T (x) = N (x|µ, 2µ) , fX|F (x) = N (x|−µ, 2µ) , (4)

where µ is the mean of the target Gaussian. CMLG estimates
a linear calibration model that transforms scores so that they
fit the theoretical well–calibrated distributions (4).

3. MIXTURE DENSITIES FOR CALIBRATION

CMLG provides good results as long as the distributions
of the target and non–target trial scores are approximately
Gaussian, with common variance. This is often not the case.
Consider a system that is able to produce well–calibrated,
Gaussian–distributed, LLRs for each condition k of a dis-
crete set of homogeneous classes. A class may consist, for
example, of trials including speech segments from the same
channel. Due to the LLR constraint (2), target and non–target

distributions are described by a single parameter µk. It was
shown in [7] that µk is directly related to the system EER.
Since it is reasonable assuming that heterogeneous conditions
may lead to different system accuracy, the distributions of the
scores of each condition will be characterized by different
values of µk. Thus, even in this ideal case, we cannot expect
that pooled scores of all K distributions follow a Gaussian
distribution.

The generative process for sampling a score with such a
system can be described as: (i) sample an experimental con-
dition k = 1, . . . , n from random variable K with probability
PK(k) = wk, and (ii) sample target and non–target scores
from X|(T, k) and from X|(F, k), respectively.

Assuming that trials can be divided into a discrete set of
homogeneous conditions is often not possible. For example,
if we consider utterance durations and noise levels as the
main factors that affect the recognizer accuracy, we expect
that conditions vary continuously. Thus, modeling conditions
with continuous, rather than with discrete, random variables
is more accurate.
Let a continuous random variable V , with density gV (v),
be responsible for the selection of sub–condition v. Let
fX|T,V (x|v) and fX|F,V (x|v) denote the conditional distri-
butions, parametrized by v, for target and non–target scores.
The PDFs fX|T (x) and fX|F (x) are obtained by marginaliz-
ing over v the joint densities:

fX|T (x) =

∫
v

fX|T,V (x|v)gV (v)dv ,

fX|F (x) =

∫
v

fX|F,V (x|v)gV (v)dv (5)

If the conditional distributions fX|T,V (x|v) and fX|F,V (x|v)
satisfy the LLR property, so that:

fX|T,V (x|v) = exfX|F,V (x|v) , (6)

then fX|T and fX|F also satisfy the LLR property because

log
fX|T,V (x|v)
fX|F,V (x|v)

= log
ex
∫
v
fX|F,V (x|v)gV (v)dv∫

v
fX|F,V (x|v)gV (v)dv

= x .

The distributions (5) are not directly tractable. Thus, we
assume that the conditional distribution for fX|T,V and for
fX|F,V is Gaussian. We also assumed that fX|T,V and fX|F,V
satisfy the LLR property, thus:

fX|T,V = N (x|µ(v), 2µ(v)) , fX|F,V = N (x|−µ(v), 2µ(v)) ,
(7)

where parameter µ is a function of the (unobserved) param-
eter v. Since we can freely specify the mixing distribution
gV (v), without loss of generality, we set µ(v) = 1

2v, and we
get the normal variance–mean mixture densities [20]:

fX|T (x) =

∫
v

N (x|1
2
v, v)g(v)dv

fX|F (x) =

∫
v

N (x| − 1

2
v, v)g(v)dv (8)
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for the target and non–target distributions, respectively.
A generic univariate variance–mean mixture random vari-

able X can be represented as:

X = µ+ βV +
√
V Y (9)

where V and Y are independent random variables, Y has
standard normal distribution, and the distribution of V is
gV (v). The PDF of X is given by

fX(x) =

∫
v

N (x|µ+ βv, v)gV (v)dv . (10)

Let’s consider the conditional distributions:

X|T = µT + βTV +
√
V Y , X|F = µF + βFV +

√
V Y .

(11)

To obtain the PDFs in (8) requires setting:

µT = µF = 0 , βT =
1

2
, βF = −1

2
. (12)

Normal variance–mean mixtures (11) with parameters de-
fined by (12) satisfy the LLR constraint, and are thus suit-
able for representing well–calibrated scores. However, nor-
mal variance–mean mixtures are difficult to handle. Thus, we
restrict our analysis to the class of the Generalized Hyperbolic
distributions (GH) [21, 22, 23]. GH distributions are obtained
as normal variance–mean mixtures where the mixing distri-
bution gV (v) is the Generalized Inverse Gaussian (GIG) [24].
The result is a 5–parameter family of distributions, with PDF:

GH(x|λ, α,β, δ, µ) = Z(λ, α, β, δ)
[
δ2 + (x− µ)2

]λ− 1
2

2

· eβ(x−µ)Kλ− 1
2

(
α

√
δ2 + (x− µ)2

)
, (13)

with λ, δ > 0, α > |β| ∈ R. Kν denotes the modified Bessel
function of the third kind with index ν, and Z(λ, α, β, δ) is
the normalization constant. Please notice that a GH distribu-
tion with parameters α→∞, δ →∞, and α

δ = σ2 converges
to the Gaussian distribution N (µ+ βσ2, σ2) [25].

From (12), taking into account that the mixing density is
the same for both the target and non–target scores, we obtain
a suitable model for well–calibrated scores by setting the pa-
rameters of the GH distributions as:

fX|T (x) = GH(x|λ, α, 1
2
, δ, 0)

fX|F (x) = GH(x|λ, α,−1

2
, δ, 0) , (14)

where the parameters λ, α and δ are shared.
The subclass of GH, with λ = − 1

2 , is the Normal Inverse
Gaussian (NIG) distribution, which was successfully used to
model target and non–target scores in [8, 13]. In particular,
in [8] independent NIG distributions are used to model score

distributions, and likelihood ratios are then computed in score
space from these distributions.
Our proposed approach is different: we show that GH (and
thus NIG) distributions of (14) are a natural solution for ob-
taining well–calibrated scores, provided that the distribution
parameters are tied. We calibrate the scores by transform-
ing the observed score densities to fit theoretically well–
calibrated GH distributed scores. This approach is similar to
CMLG [7], but rather than targeting Gaussian distributions,
we target the more flexible family of GH distributions.

As for CMLG, a linear calibration model can be obtained
by ML, estimating the distributions that fit the original scores,
assuming that the scores distributions are linear transforma-
tion of the theoretical well–calibrated distributions.

Since GH distributions are closed under affine transfor-
mations [26], if X ∼ GH(λ, β, α, δ, µ), then:

aX + b ∼ GH(λ,
α

|a| ,
β

a
,
δ

|a| , aµ+ b) . (15)

Assuming the linear calibration model:

x(s) = as+ b , a > 0 , (16)

and defining the random variables that generated the observed
scores, S|T = 1

a (X|T ) − b
a and S|F = 1

a (X|F ) − b
a , we

have that:

S|T ∼ GH(λ, aα, aβ, aδ,− b
a
) ∼ GH(λ, α, β, δ, µ) (17)

S|F ∼ GH(λ, aα,−aβ, aδ,− b
a
) ∼ GH(λ, α,−β, δ, µ) ,

where we set µ = − b
a , α = aα , β = aβ , δ = aδ.

The parameters µ, α, β, and δ can be estimated by maximiz-
ing the weighted likelihood:

L =
π

nT

nT∑
i=1

GH(sT,i|λ, α, β, δ, µ)

+
1− π
nF

nF∑
i=1

GH(sF,i|λ, α,−β, δ, µ) , (18)

where nT and nF denote the number of target and non–target
training scores, 0 < π < 1 is a tunable weight, and sT,i and
sF,i denote the i–th target and non–target score, respectively.
The ML solution can be found using a slight modification
of the Expectation Maximization algorithm [27], which has
to take into account weights and parameters relations during
the M–step. The case of NIG distributions can be solved by
modifying the simpler EM algorithm of [28]. Given the ML
solution for (17), the calibration parameters can be finally ob-
tained simply as:

a = 2β , b = −2βµ . (19)
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(c) π = 0.99

Fig. 1: Normalized Bayes error rate for LogReg, CMLG, CMLNIG, and NIG methods as a function of a DCF operating point.
The value of π for the first three methods is reported in each figure.

4. EXPERIMENTS

In this section we compare our proposed method, restricted to
NIG distributions (CMLNIG), with LogReg, CMLG and the
NIG approach of [8]. Since we are interested in non–Gaussian
distributed scores, we focus on variable duration utterances,
and we analyze the scores of an i–vector based PLDA model
that exploits the i–vector uncertainty [29, 30]. Indeed, in ac-
cordance with our analysis of Section 3, we observed that
methods that consider the i–vector covariance have better ac-
curacy, but their score distribution is “less Gaussian”.

The system that has been used for the experiments is
based on a gender independent, 2048 components, GMM
with diagonal covariances, and on a gender–dependent i–vector
extractor that produces 400–dimensional i–vectors and their
covariances. The training set for the UBM consisted of NIST
04, 05 and 06 data. Switchboard 2 was added for training the
i–vector extractor. The tests were performed on the female
portion of SRE 2010 tel–tel extended condition, cutting short
segments from 3 to 60 seconds. Calibration parameters were
estimated on a subset of the NIST 08 female dataset, similarly
cut.

Figure 1a shows the normalized Bayes error rate plot [31]
for different systems. X–axis corresponds to different target
prior log–odds x = log p

1−p , where p is a synthetic prior. Y–
axis plots the corresponding normalized actual DCF. Parame-
ter π was set to 0.5 for LogReg, CMLG and CMLNIG.

While our proposed approach achieves similar results to
LogReg and NIG, CMLG–based calibration is less effective
for low False Acceptance (FA) regions.
Since LogReg, CMLG and CMLNIG are sensible to the
choice of π, a second set of experiments has been performed
varying the values for π. Figures 1b and 1c show the results
with π = 0.01 and π = 0.99, respectively. As expected, a
low π value, i.e., a low target prior, allows LogReg to slightly
improve calibration for low FA regions, but it worsen calibra-
tion for low False Rejection region. On the contrary, for large

π values, LogReg fails in the low FA regions. Surprisingly,
we observed the opposite behavior for CMLG. This is in
contrast with the findings of [8], which showed that, for low
π values, CMLG provides better calibration in the low FA
region. We believe that this is due to different distributions
of the scores produced by our system and by the system used
in [8]. Indeed, the target prior value is used in CMLG only
to favor a better fitting of the target or of the non–target score
distribution, rather than to give more weight the FAs, as it is
the case for LogReg. This was confirmed by an experiment
in which we artificially increased the variance of the target
scores, and obtained the same behavior reported in [8].

Figures 1b and 1c show that our approach is less sensitive
to proper tuning of parameter π, and that it provides similar
results with respect to the NIG approach for a wide range of
values of π.

5. CONCLUSIONS

We introduced tied normal variance–mean mixture distribu-
tions for modeling well–calibrated non–Gaussian score distri-
butions. In this work we limited our experiments to the esti-
mation of the parameters of tied NIG distributions so that they
fit the original scores, assuming that the scores distributions
are a linear transformation of the theoretical well–calibrated
distributions. However, an alternative approach consists in
learning a density transformation that directly transforms the
score distributions to well–calibrated LLR distributions. This
solution is appealing because it can be extended to define and
estimate monotonic non–linear calibration models using the
same approach that has been used in [32, 33] for transforming
i–vectors. Furthermore, we believe that our approach is better
suited to unsupervised training of the calibration models with
respect to the NIG models of [8] because it has less parame-
ters to estimate, and because tying helps identifying the small
fraction of targets typically included in an unlabeled dataset.
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[31] N. Brümmer, Measuring, refining and calibrating speaker and
language information extracted from speech. PhD thesis, Stel-
lenbosch University, South Africa, 2010.

[32] S. Cumani and P. Laface, “Non–linear i–vector transforma-
tions for PLDA based speaker recognition,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25,
no. 4, pp. 908–919, 2017.

[33] S. Cumani and P. Laface, “Joint estimation of PLDA and non–
linear transformations of speaker vectors,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25,
no. 10, pp. 1890–1900, 2017.

6125


		2019-03-18T11:09:27-0500
	Preflight Ticket Signature




