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ABSTRACT

This paper aims to improve the widely used deep speaker
embedding x-vector model. We propose the following im-
provements: (1) a hybrid neural network structure using
both time delay neural network (TDNN) and long short-term
memory neural networks (LSTM) to generate complementary
speaker information at different levels; (2) a multi-level pool-
ing strategy to collect speaker information from both TDNN
and LSTM layers; (3) a regularization scheme on the speaker
embedding extraction layer to make the extracted embed-
dings suitable for the following fusion step. The synergy of
these improvements are shown on the NIST SRE 2016 eval
test (with a 19% EER reduction) and SRE 2018 dev test (with
a 9% EER reduction), as well as more than 10% DCF scores
reduction on these two test sets over the x-vector baseline.

Index Terms— Speaker recognition, x-vector, multi-level
pooling

1. INTRODUCTION

Speaker verification (SV)[1] is one of the key components for
human machine interface and initially was widely used in per-
son identification for security purposes. Nowadays with in-
telligent speech assistants such as Alexa, Google Home, Siri
and Cortana being used in home environments as well as on
smartphones, the demand for SV technology is rising. This is
especially true for robust speaker verification in challenging
acoustic conditions and different population of speakers. The
speaker verification problem usually falls into two categories:
text-dependent (TD) SV and text-independent (TI) SV. In the
TD SV system, the transcriptions for the test utterances and
enrollment utterances are the same and usually limited to a
small set. In the TI SV system, there is no constraint on tran-
scriptions for both test and enrollment utterances. Hence the
TI case is more difficult than the TD case due to larger varia-
tions introduced by different utterance transcriptions and du-
ration. In this study, we will focus on the more challenging
TI speaker verification system.

Recently, more attention has been drawn to the use of
deep neural networks (DNN) to generate speaker embedding

representations [2] [3] [4]. These deep speaker embedding
systems are shown to have large improvements over the i-
vector [5] based methods, especially the recently proposed
x-vector system with data augmentation [4]. The DNN based
speaker embedding extraction system usually consists of
three components: frame level feature processing, utterance
(speaker) level feature processing and training loss. Frame
level processing deals with local short span of acoustic fea-
tures. It can be done via recurrent neural networks [2] or con-
volutional neural networks [3][6]. Utterance level processing
forms speaker representation based on the frame level output.
A pooling layer is used to gather frame level information to
form utterance level representation. Methods such as statisti-
cal pooling [3], max pooling[7], attentive statistical pooling
[8], multi-headed attentive statistical pooling [9] are popular
choices. Cross entropy and triplet loss are two widely used
training losses. Cross entropy based methods are focused on
reducing the confusion for all speakers in the training data
[3], while triplet loss based methods [10][11][12][13] are
focused on increasing the margin between similar speakers.

In this paper, we propose a novel deep speaker embed-
ding learning framework to improve upon the x-vector sys-
tem. We first add LSTM layers to the x-vector’s TDNN struc-
ture, because sequential modeling of an utterance would gen-
erate different speaker information from that of TDNN. In
order to aggregate these different information, we propose
a multi-level pooling strategy to fuse different information
from the different frame level models, one from TDNN and
one from LSTM. We also add a regularization term on the
speaker embedding extraction layer in order to make the sys-
tem output more suitable for the back-end processing. Over-
all, the proposed new speaker embedding system improves
the equal error rate (EER) by 19% and the detection cost
function(DCF)[1] score by 12%, compared to the previous
x-vector baseline on the NIST SRE 2016 eval test. This is to
our knowledge the lowest EERs (9.2% on Tagalog and 3.1%
on Cantonese) on SRE 2016 eval test in publications so far.

The rest of this paper is organized as follows. Section 2
briefly describes prior work, including the baseline x-vector
system and related work. The proposed new system is intro-
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duced in Section 3 on gathering speaker information from dif-
ferent modeling levels. The experimental set up, results and
analysis are described in Section 4. Finally, the conclusion is
given at Section 5.

2. PRIOR WORK

2.1. Baseline x-vector System

Figure 1 depicts the deep neural network configuration for x-
vector system [3][4]. The blue, yellow and green blocks rep-
resent the frame level, utterance level and training loss used in
the system training. Black arrows indicate a ReLU activation
function. Batch normalization layers are added in two adja-
cent layers, while the red arrows indicate there is no nonlinear
mapping added between layers.

Fig. 1. Model structure of baseline x-vector system.

The frame level model consists of three TDNN layers to
extract speaker information at the frame level. X-Y-Z in the
block represents the number of filters, filter window size and
dilation number at this layer. At the utterance level, high or-
der stats pooling methods such statistical pooling or attentive
statistical pooling can be used. The output (concatenation of
the mean and standard deviation vectors) is fed into another
three fully connected layers. Speaker embeddings are then
extracted from the output of the first linear projection layer.

Cross entropy loss is used to train the system and reduce
the confusion between all speakers in the training set. Once
speaker embeddings are extracted, LDA and PLDA [14] are
used as back-end scoring, as in the standard Kaldi x-vector
recipe.

2.2. Related work

Combining CNN or TDNN with LSTM is proved effective
in automatic speech recognition (ASR) tasks. Sainath et al.
[15] proposed to stack CNN, LSTM and DNN sequentially
for speech recognition and it shows superior results than using
CNN, LSTM or DNN alone. Peddinti et al. [16] conducted
experiments to compare the stack order of TDNN and LSTM
and found interleaving of TDNN layers with LSTM layers
could be more effective than simple stacking strategy.

Pooling module is the key component to bridge frame
level features to speaker representation. High order statisti-
cal pooling [3] shows better performance than simple pool-
ing method like average or maximum pooling. Okabe et al.
[8] proposed parametric based attentive pooling to give differ-
ent importance for each frame feature. Zhu et al. [9] further
extended it to multiple heads to generate utterance represen-
tation from different views. The multiple-level pooling pro-
posed in this work is focused on the way to gather pooling
features instead of pooling module itself.

3. DEEP SPEAKER EMBEDDING WITH
MULTI-LEVEL POOLING

Figure 2 shows the proposed new deep speaker embedding
training used in this study. In order to generate complimen-
tary information, a hybrid structure with both TDNN and
LSTM layers is proposed in this framework. The TDNN
layer would focus on the local feature representation, while
the LSTM layer would consider global and sequential infor-
mation from the whole utterance. The multi-level pooling
from the TDNN and LSTM layers generate different repre-
sentations on the utterance level. This would help to gather
speaker information from different spaces and generate a
comprehensive speaker representation. This would also help
to pass error signals back to earlier layers which, in turn,
helps alleviate the vanishing gradient problem. The outputs
of different pooling layers are concatenated and fused into
the following fully connected layers. Even though residual
networks with very deep neural network structures [17][6]
are popular for computer vision tasks, we haven’t seen good
improvements from very deep structures, as shown in [7].
Therefore we use the same number of TDNN layers as in
x-vector model.

The x-vector system is not an end-to-end SV system. The
extracted speaker embeddings are passed to the back-end
classifiers of LDA and PLDA, which are both linear trans-
forms trained with different objective functions. Thus there
is a mismatch of training loss and LDA/PLDA training ob-
jectives, as noticed in [18]. In order to make the embedding
output suitable for the backend, a regularization term is intro-
duced by applying a constraint on the norm of the embedding
layer output.

L = −
M∑
i=1

log
expw

T
ci
xi+bci∑N

j expw
T
j xi+bj

+ λ||zi||2 (1)

In the above equation, ci is the speaker index from training
sample i, wj corresponds to j-th column of W ∈ RdXN the
last linear projection layer before softmax, bj is the bias term,
N andM are the number of speakers and samples in the train-
ing data respectively. xi is the output tensor for the 2nd fully
connected layer in the utterance level model, zi the output
tensor of the 1st fully connected layer without ReLU non-
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linearity and batch normalization. Note, the regularization
is applied to the output of the speaker embedding extraction
layer directly instead of the weights in the neural network.

Fig. 2. Deep speaker embedding with multi-level pooling
(Model MP in Table 1)

4. EXPERIMENTS AND RESULTS

4.1. Data set

Both the baseline x-vector and our proposed deep speaker
embedding systems are evaluated on the NIST SRE16 eval
test and SRE18 dev test. The SRE16 test set includes Taga-
log and Cantonese telephone speech. For the SRE18 dataset,
only Call My Net2 (CMN2) portion of development data set is
used in our test. The CMN2 data is composed of both PSTN
and VOIP data collected outside North America, spoken in
Tunisian Arabic. The amount of enrollment data is around 60
seconds per speaker and the duration test data is ranging ap-
proximately from 10 seconds to 60 seconds. In both SRE16
and SRE18, the tasks aim to deal with domain mismatch be-
tween the development and test data, including channel, noise
condition and language mismatches.

In order to handle multiple domain data, a large training
dataset is formed from SRE18 allowed, publicly available,
data sources: SRE data from years 2004 to 2006, 2008, 2010;
all Switchboard data; all Fisher data and all Voxceleb data,
with a total amount of 13, 564 hours. This dataset consists
of both telephone and microphone speech from total 20, 803
speakers. The model is trained on the 8kHz data. The fea-
tures include 40 dimensional filterbanks and 3 dimensional
pitch features. The feature has frame-lengths of 25ms, mean-
normalized over a sliding window of up to 3 seconds. The

Kaldi energy based SAD is used to filter out non-speech
frames.

We follow the same data augmentation procedure con-
ducted in [4] on the training data to alleviate the noise condi-
tion mismatch. The data augmentation strategy includes both
adding additive noises and reverberation data.

In both SRE16 and SRE18 NIST provided tens of hours
unlabelled but matched data for development. For back-end
scoring, an LDA projects speaker embeddings from 256 to
150, estimated from SRE training data. The same SRE train-
ing data is also used to estimate the PLDA classifier. An extra
PLDA adaptation [19] is conducted on the unlabelled devel-
opment data to reduce training/testing mismatch.

4.2. Experimental Setup

The configuration of the baseline x-vector system is described
in Section 2.1. One thing to mention is that a smaller neuron
number is used in the speaker embedding extraction layer, say
256 instead of 512, as shown in Figure 1. This benefits the
following backend processing step such as LDA and PLDA
estimation to give better evaluation results.

The configurations of the three systems to be examined as
well as the baseline system are compared in Table 1:

Table 1. Experimental model configures

Model Name Model Configurations
x-vector TDNN1-TDNN2-TDNN3-P
A TDNN1-P-TDNN2-P-TDNN3-P
B TDNN1-TDNN2-TDNN3-LSTM-P
MP TDNN1-TDNN2-TDNN3-P-LSTM-P

In the above table, TDNNi represents the ith TDNN layer
in the frame level model, P represents a pooling operation
applied to the output of the previous layer. Each pooling
operation includes two fully connected layers with statistical
pooling afterwards. Model MP (Fig. 2) is the proposed sys-
tem and x-vector is the baseline system in this study. Models
A and B are model configurations between MP and the x-
vector baseline. These two models are used to understand the
differences between regular pooling and our multi-level pool-
ing.

Compared with x-vector and model A, model B and MP
each have one bidirectional LSTM layer after TDNN blocks
in the frame level model. The number of neurons is 512. x-
vector and model B are single pooling based systems while
model A and MP are multiple pooling based systems. In the
multiple pooling based systems (A and MP ), different sta-
tistical pooling outputs will be concatenated together before
sending to the following fully connected layers in the utter-
ance level model. In order to keep the size of pooling output
across different systems the same, the number of neurons in
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the 2nd fully connected layer (before pooling module) will
be changed from 1500 to 500 and 750 for model B and MP
respectively.

The system is implemented with PyTorch and optimized
with stochastic gradient descent (SGD) using momentum
(0.9), with a mini-batch size of 256.

4.3. Experimental Results

We report results in terms of EER and the minimum DCF at
Ptarget = 0.01 and Ptarget = 0.005. No score normalization,
e.g., t-norm or s-norm [20], is applied in this study.

Table 2. Results on SRE16 eval test.
Model λ = 0 λ = 0.001

Pooled Tag. Can. Pooled Tag. Can.
x-vector 7.61 10.98 3.95 6.90 10.20 3.50
A 8.17 11.78 4.45 7.51 10.93 4.06
B 6.64 9.80 3.40 6.84 9.83 3.82
MP 6.68 9.74 3.51 6.13 9.18 3.13

The EERs on the SRE16 test set are shown in Table 2. The
left side of the table are results without regularization and the
right side with regularization λ = 0.001.

We first examine our results when no regularization is ap-
plied. Our results from the left side of Table 1 shows that
with no regularization, there is no gain with pooling compar-
ing Model A to the baseline x-vector. Adding a bidirectional
LSTM in Model B helps reducing the EER by 12.7% relative
to the baseline.

Now we move on to our results with regularization (the
right side of Table 2). Compared to the results on the left
side, most models achieve significant EER reduction. Our
proposed model (MP ) achieves the best results in this test
set. These results show that multiple pooling operations is
only beneficial if the pooling information comes from differ-
ent sources. In our proposed model MP , one pooling opera-
tion is conducted after the TDNN layers, which focus on local
information, and the 2nd pooling operation is conducted after
the LSTM layer, which extracts sequential information.

Adding a regularization term on the norm of the embed-
ding output is useful for most models, especially for models
with multiple pooling. This reduces the range of the norm of
the output embedding vectors, from 500 to 10. This makes the
speaker embeddings more numerically stable for the backend
scoring. Reducing the norm of the output embeddings also
may condense features from different levels of the model, into
the same numerical range, which helps them to be fused prop-
erly.

Overall, comparing the result from our proposed model
MP with regularization, against the baseline x-vector model,
we observe a relative 19% EER reduction. The correspond-
ing DCF scores are reported in Table 3, for different Ptarget

Table 3. DCF scores for SRE16 (pooled) test set

model λ = 0 λ = 0.001
p = 0.01 p = 0.005 p = 0.01 p = 0.005

x-vector 0.593 0.651 0.594 0.673
B 0.581 0.656 0.525 0.586
MP 0.567 0.632 0.506 0.571

Table 4. Evaluation results on the SRE18 (CMN2) dev set

λ model EER DCF (0.01) DCF (0.005)

0.0
x-vector 7.29 0.593 0.651
B 7.90 0.581 0.656
MP 7.16 0.567 0.632

0.001
x-vector 7.46 0.594 0.673
B 7.77 0.525 0.586
MP 6.61 0.506 0.571

values. There is a 14.6% and 12.3% DCF score reduction
compared with the baseline for Ptarget = 0.01 and 0.005 re-
spectively.

In Table 4, results on the SRE18 CMN2 development set
are presented. Similar to SRE16 results, model MP achieves
the best result: 9.3% EER reduction and 12% to 14% DCF
score reduction are achieved when regularization is applied.

5. CONCLUSIONS

In this study, we propose a novel pooling strategy for gath-
ering speaker information from different levels of the model.
Our three main contributions are as follows: (1) A hybrid
model structure including both TDNN and LSTM is em-
ployed to generate complimentary information. Output from
TDNN blocks focuses on local information and LSTM layer
emphasizes on global and sequential information generated
from the whole utterance. (2) Different representation ex-
tract from the hybrid model are pooled at multiple levels
and combined to obtain a robust speaker representation. (3)
A regularization is applied to the output of the embedding
extraction layer, which significantly reduces the norm of ex-
tracted embedding and keeps it in a reasonable value range
as well as keeping the embedding more numerically stable
for the following backend scoring. The synergy of these
improvements are shown on the NIST SRE 2016 eval test
(with a 19% EER reduction) and SRE 2018 dev test (with a
9% EER reduction), as well as more than 10% DCF scores
reduction on these two test sets over the x-vector baseline.
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