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ABSTRACT 

 
Replay attack refers to the use of recorded speech in an attempt to 

spoof an automatic speaker verification system and the 

development of countermeasures that can detect these attacks is an 

active area of research. This paper investigates the effect of 

phoneme specific information on replay attack detection. It then 

develops a replay detection system that employs phoneme specific 

genuine and spoof models and compares novel scoring methods 

that take into account phonetic information obtained from a 

suitable phoneme recogniser. Experiment result on the ASVSpoof 

2017 V2.0 corpus indicated that replayed speech may be easier to 

detect from speech corresponding to some phonemes compared to 

others and consequently judicious use of phoneme specific models 

can improve replay detection systems. 

 

Index Terms— spoofing detection, replay attack, phoneme 

detection, phoneme posterior weighted score, speaker verification. 

 

1.  INTRODUCTION 

Replay attacks are simple yet effective means by which automatic 

speaker verification (ASV) system can be spoofed using simple 

audio record and playback devices [1]. Most current approaches to 

replay detection rely on the observation that the speech signal 

involved in replay attacks must pass through both recording and 

playback channels, which in turn may result in some spectral 

distortion. Replay detection may then be cast as a problem of 

detection of this channel distortion, while taking into consideration 

that there is a myriad of recording and playback channels and these 

cannot be known a priori. 

Generally, spoofing detection includes front-end as well as 

back-end and most of the anti-spoofing research for replay attack 

has been focused on feature engineering while the classification 

blocks are often built on the traditional classification techniques 

such as Gaussian mixture model (GMM), support vector machine 

(SVM) [2]. Front ends based on variants of spectral features, long-

term spectral statistics [3], voice source [4], phase based features 

[5] and different variants of deep neural network based systems [5 

- 9] have been investigated, extensively. The features indicative of 

spectral cues, include spectral centroid magnitude coefficient 

(SCMC) [10], constant-Q cepstral coefficient (CQCC) [11], 

rectangular filter cepstral coefficients (RFCC) [10], scattering 

coefficients [12], spectral energy slope [13], spectro-temporal 

modulation feature (STMF) [14, 15], often use spectrogram to 

extract the information. It has been suggested that replayed signals 

would include noise and reverberation, leading to a flatter and 

altered spectrogram [14]. Each region of spectrogram tends to be 

affected differently which in turn could mean different phonemes 

are affected differently by the replay channel.  Furthermore, it has 

also been suggested that different phonemes vary in their 

robustness to reverberation in the context of automatic speech 

recognition [16]. Motivated by above findings, we aim to 

investigate how phoneme related information can be incorporated 

in to replay attack detection systems. 

In addition, features employed in any spoofing detection 

system will be incorporate variability due to a number of factors 

such as channel effects, differences between speakers, and 

phonetic variability arising from the linguistic content. Previous 

work has shown that replay detection can be improved by making 

use of speaker specific models and in turn implicitly compensating 

for speaker variability [15]. Phonetic variability is generally not 

explicitly taken into consideration. Instead, most back-ends model 

the statistical distribution of the features for replayed and genuine 

speech and rely on the back-ends capturing the differences across 

all phonemes. However, in other areas of speech processing, such 

as emotion recognition  [17] and speaker verification [18], explicit 

modelling of phonetic information has been shown to be 

beneficial. 

This paper makes three key contributions; firstly we 

investigate if some phonemes are more conducive replay detection 

than others; secondly, we proposed a novel framework to 

incorporate phoneme specific models into a replay detection 

system; and finally we compare four scoring methods developed to 

incorporate phonetic information. To the best of the authors’ 

knowledge this is the first study on the effect of phonetic variation 

in replay detection. 

 

2.  DATABASE  

The original ASVSpoof 2017 challenge corpus [19], comprising of 

genuine recordings and their replayed versions, are used in all the 

experiments outlined in this paper. The RedDots text dependent 

corpus is used directly for the genuine utterances. Replayed speech 

utterances are created through recording the playback of the 

genuine speech through the different playback and recording 

devices in various acoustic environments. Three non-overlapping 

subsets as train, development and evaluation are provided. As this 

is a text dependent corpus, 10 phrases have been used in all 

subsets. Anomalies identified in the original ASVSpoof 2017 
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corpus prompted the organisers to release an updated version 

referred to as the ASVSpoof 2017 Version 2.0 (V2.0) corpus and a 

new enhanced CQCC baseline in 2018 [11] and all our 

experiments results reported here are on the V2.0 corpus . It should 

be noted that results reported using the original ASVSpoof 2017 

(V1.0) are not directly comparable with V2.0 results. 

 

3.  PHONETIC VARIABILITY ANALYSIS 

As previously mentioned, replay detection may be cast as a 

problem of detecting an a priori unknown channel, where the 

channel comprises of the recording and playback devices in 

addition to the acoustic environment. This in turn is typically 

implemented as the detection of the spectral distortion introduced 

by the channel. Consequently, since different phonemes have 

different spectral characteristics (for instance, fricatives have more 

of their energy contents in the high frequency regions while vowels 

contain more of their energy in the lower frequency regions), the 

ease of detecting the spectral characteristics of an unknown 

channel may vary across different phonemes.  

Our main aim of this work is to determine whether some 

phonemes allow easier detection of spoofed speech compared to 

others. Specifically, we investigate whether every phoneme 

affected differently, during the process of replay. To analyse which 

phoneme has more discriminative ability each phoneme has 

examined separately. First, the corresponding phoneme presents in 

each frame is detected and then discriminative power between 

genuine and spoof class of different phonemes was estimated using 

two approaches: model-level and classification-level comparison.  

 

3.1. Phoneme Detection and Frame Labelling 

A frame based phoneme detector is used to estimate the phoneme 

posteriors for each frame. The most dominant phoneme (the 

phoneme with the highest posterior probability) was then 

associated with the corresponding frame, determined by applying a 

predetermined threshold to the phoneme posterior probabilities. 

 

Table 1. Categories of phoneme 

 

Vowels aa, ae, ah, eh, er, ih, iy, uh, uw 

Semivowels l, r, w, y 

Diphthongs aw, ay, ey, ow, oy 

Affricatives ch, jh 

Fricatives Voiced dh, dx, v, z 

Unvoiced f, hh, th, s, sh 

Nasals m, n, ng 

Stops Voiced b, d, g 

Unvoiced k, p, t 

Non speech/Silence pau 

 

The BUT phoneme recognizer [20] with 39 English phonemes 

is used to identify the relevant phoneme label through the phoneme 

posterior probabilities. When evaluated on the TIMIT database, 

phone recogniser had an accuracy of 74%. A posterior probability 

threshold of 0.75 is empirically determined which assigns a 

reasonable number of frames to each phoneme. This means a frame 

with a highest phoneme posterior probability of greater than 0.75 is 

assigned to the corresponding phoneme label or otherwise it will 

be discarded without any label assignment to ensure that only 

frames with high likelihood of corresponding to one of the 

phonemes are chosen for train data. This thresholding retained 

about 15% of original training data. The phonemes can be 

classified (as in Table 1) as either vowels, semivowels, diphthongs, 

affricatives, fricatives, nasals, stops and silence (‘Pau’). ‘Pau’ 

phonemes (i.e. non-speech) are also included since they tend to 

carry artefacts of the acoustic environment channels present in 

replayed speech and they have been shown to be effective in replay 

detection [21, 22]. 

 

3.2. Individual Spoofing Detection  

In order to measure the discriminative ability of each phoneme, a 

spoofing detection system is setup and the discriminative ability 

measures for different phonemes are determined, independently. 

For this purpose, as shown in Figure 1, individual genuine and 

spoof models for every phoneme are utilized for spoofing 

detection.  
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Figure 1: Training of phoneme specific models 

 

3.2.1. Feature Extraction 

Rectangular frequency cepstral coefficients (RFCCs) are state-of-

the-art short-term (frame based) features reported on the ASVspoof 

V2.0 of the corpus [10, 21], and are used in the systems developed 

in this work. RFCCs were computed with a 20ms frame duration 

obtained using a hamming window with 50% overlap. The speech 

was pre-emphasized prior to feature extraction. RFCCs were 

extracted using a linear frequency scale as it captures the replay 

channel artefacts better than other frequency scales, e.g. mel, 

inverse-mel etc [10]. 40-dimensional RFCCs were extracted and 

appended with their dynamic coefficients (velocity and 

acceleration) to obtain a 120-dimensional feature vector. Cepstral 

mean normalization (CMN) is then carried, which was found to be 

highly beneficial for replay detection [10]. Previously proposed  

state-of-the-art spectro temporal modulation feature (STMF) 

(utterance level feature) [14]  and other longer term features are not 

suitable for use in this work as the frame duration must be less than 

typical phoneme durations. 

 

3.2.2. Modelling and Classification 
The approach proposed in this work to study phoneme variability 

employs GMM based models of spoofed and genuine speech. 

Specifically, a background model for genuine and spoofed speech 

is initially trained on genuine and spoofed speech, using the EM 
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algorithm, and is referred to as the genuine universal background 

model (genuine UBM) and spoofed UBM. Following this, each 

phoneme models are adapted from genuine UBM and spoofed 

UBM (refer Figure 1). 

Given these models and a frame of a test utterance, the final 

decision about whether it is genuine speech or replayed speech is 

based on the log-likelihood ratio (LLR) between genuine and 

spoofed model of corresponding phoneme is given by: 

  𝐿𝐿𝑅𝑗
(𝑖)

(𝑋𝑗) = 𝑙𝑜𝑔 𝑃 (𝑋𝑗|𝜃𝑔
(𝑖)

) − 𝑙𝑜𝑔 𝑃 (𝑋𝑗|𝜃𝑠
(𝑖)

) (1) 

where 𝑋𝑗  denotes the feature vector from 𝑗𝑡ℎ  frame of the test 

utterance, 𝜃𝑔
(𝑖)

denotes the genuine GMM corresponding to 𝑖𝑡ℎ 

phoneme, 𝜃𝑠
(𝑖)

 denotes the spoofed GMM belongs to 𝑖𝑡ℎ phoneme. 

Rather than assigning a frame to a phoneme we have used the 

phoneme posteriors as weight to each LLR score to make the final 

decision as follows: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐿𝐿𝑅𝑗
(𝑖)

(𝑋𝑗) =  𝑝𝑗
(𝑖)

(𝑋𝑗) × 𝐿𝐿𝑅𝑗
(𝑖)

(𝑋𝑗) (2) 

where 𝑝𝑗
(𝑖)

 is the phoneme posterior probability of corresponding 

frame which calculated from the BUT phoneme detector in our 

case. The reasons behind weighting LLR by phone posterior 

probability is to retain all the frames in the test utterance while 

incorporating the information about how likely each frame belongs 

to the 39 phonemes. This procedure differs from training phase 

where the frames with at least 0.75 probability are chosen for 

training. 

A 512 mixture GMM is used for each of the genuine and 

spoof UBM models, which are estimated using the Expectation 

Maximization (EM) criteria on the pooled train and development 

sets. Phoneme specific models are learnt via mean and variance 

MAP adaptation from corresponding UBMs using train data 

(phoneme labelled data after the thresholding as described in 

Section 3.1) with MAP adaption factor of 10 which is empirically 

chosen from development set. 

 

3.3. Baseline System  
The current replay detection systems employ a ‘genuine’ speech 

model and a ‘spoofed’ speech model that is modelled using 

genuine and spoofed training data. The log likelihood ratio of a 

frame (LLRj) and final score (𝐿𝐿𝑅) for an utterance for the baseline 

system are generally calculated as shown below: 

𝐿𝐿𝑅𝑗 (𝑋𝑗) = 𝑙𝑜𝑔 𝑃(𝑋𝑗|𝜃𝑔 ) − 𝑙𝑜𝑔 𝑃(𝑋𝑗|𝜃𝑠 ) (3) 

𝐿𝐿𝑅(𝑋) =  
1

𝑁
 ∑ 𝐿𝐿𝑅𝑗 (𝑋𝑗)

𝑁

𝑗=1

 (4) 

where 𝑋𝑗  denotes the set of feature vector from 𝑗𝑡ℎ frame of the test 

utterance 𝑋 , 𝜃𝑔 denotes the genuine GMM and 𝜃𝑠  denotes the 

spoofed GMM and 𝑁 denotes the total number of frames of the 

utterance. The number of mixture components for the GMM used 

in the baseline was empirically chosen to be 512, with no 

performance increment observed when using more components.  

 

3.4. Measures of Discriminability 
In order to discern the effect of the different phoneme, we carried 

out the model level and classification level discriminative analysis 

between the genuine and spoofed speech using the Kullback-

Leibler (KL) divergence and Equal Error Rate (EER), respectively 

for every phoneme independently. KL divergence is generally used 

to measure the distance between two probabilistic models. We 

used Monte Carlo approximation based KL divergence [23] to 

measure the distance between phoneme specific spoofed and 

genuine speech models. False alarm rate (FAR) and miss rate (MR) 

measures are used to derive EER, which are defined as same as the 

ASVspoof 2017 challenge [19]. By varying the threshold, the 

trade-off between FAR and MR is determined. The EER is a single 

point where trade-off leads to equal value for FAR and MR. 

 

 
 

Figure 2:  KL divergence of the 39 phonemes estimated between 

their respective genuine and spoof GMMs with baseline system on 

ASVSpoof 2017 V2.0 train set. Here X-axis (phonemes) follows the 

phoneme category order tabulated in Table 1. 

 

 
 

Figure 3:  Comparison of %EER of individual spoofing detection 

system of 39 phonemes on ASVSpoof 2017 V2.0 development set. 

Here X-axis (phonemes) follows the phoneme category order 

tabulated in Table 1. 

 

KL divergence of the 39 phonemes are estimated between 

their respective genuine and spoof GMMs in the ASVSpoof 2017 

V2.0 train set independently. KL divergence between the genuine 

and spoof models for each phoneme and baseline genuine and 

spoof model is shown in Figure 2. A larger degree of mutual 

dissimilarity results a large KL divergence and vice versa. It is 

clearly noticeable that the KL divergence of individual phoneme 

models varies among them and all of them have the higher KL 

divergence than the baseline system. It is evident that phoneme 

specific modelling of genuine and spoofed speech could be more 

beneficial than the modelling one phoneme independent genuine 

and spoof models each.  

Classification level measure is calculated in terms of EER of 

each phoneme on ASVspoof 2017 V2.0 development set 

independently, using the weighted LLR as described in the 

equation 2 and depicted in Figure 3. Lower EER describes the high 

discrimination. It is evident that the EER of every phoneme differ 

with each other as similar to the findings from KL divergence plot. 

Also, it is noticeable that the phonemes correspond to the higher 
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EER ones have lower KL divergence and lower EER ones have 

higher KL divergence and vice versa.  

From Figure 2 and Figure 3, it can be seen that every 

phoneme has different levels of discriminative ability.  It is clear 

that almost all the fricatives, nasals, stops and silence regions have 

been helping more towards identifying the replay channels than 

most of vowels, semivowels, diphthongs and affricatives. This is 

arguably true since vowels have more energy in low frequencies 

and while fricatives have more energy in high frequencies as 

replayed speech have been shown to exhibit more artefacts at 

higher frequencies [8]. Also, within fricatives and stops it is been 

observed that the unvoiced ones are more discriminative than the 

voiced ones. This analysis also confirmed that the Silence (‘Pau’) 

regions are helpful as they have the emphasized environmental 

channel artefacts than speech regions, which are also masked with 

the speaker related information. 

 

4.  PROPOSED PHONEME SPECIFIC SYSTEM AND 

SCORING TECHNIQUES 

As seen in Section 3, the phoneme-dependency of discrimination 

between genuine and spoofed speech varies for each and every 

phoneme, and hence we propose a novel framework to incorporate 

phoneme specific models into a replay detection system and four 

scoring methods developed to incorporate phonetic information. 

Phoneme specific spoofing detection system consists of genuine 

and spoofed models for each individual phoneme independently 

(as shown in Figure 1) and score level fusion.  

Phonetic variability analysis experiment indicated that some 

phonemes which carry more information should be utilized more in 

decision making process, to detect replay attack effectively, which 

is in the motivation for the new scoring techniques. There are four 

scoring methods proposed in this paper. The first two techniques 

simply make use of scores derived from each phoneme models for 

the fusion. These are referred to as phone posterior weighted score 

(PPWS) and maximum phone posterior weighted score 

(PPWS_max) and defined as:  

 

𝑃𝑃𝑊𝑆 =
1

𝑁
 ∑ ∑ 𝑝𝑗

(𝑖)
(𝑋𝑗)  × 𝐿𝐿𝑅𝑗

(𝑖)
(𝑋𝑗)

𝑁

𝑗=1

39

𝑖=1

 

 

(5) 

𝑃𝑃𝑊𝑆_𝑚𝑎𝑥 =
1

𝑁
 ∑ 𝑝𝑗

(𝑖)
(𝑋𝑗)  × 𝐿𝐿𝑅𝑗

(𝑖)
(𝑋𝑗)

𝑁

𝑗,𝑖=𝑀𝑎𝑥(𝑝𝑗
(𝑖)

 )

 (6) 

where 𝑁 denotes the total number of frames of the utterance.  pj
(i)

 

and 𝐿𝐿𝑅𝑗
(𝑖)

 are the phoneme posterior probability and LLR of the 

𝑗𝑡ℎ  frame for the corresponding 𝑖𝑡ℎ  phoneme model which is 

defined as,  𝑝𝑗
(𝑖)

= 𝑃(𝑃ℎ𝑜𝑛𝑒 𝑖|𝑋𝑗)  with ∑  𝑃(𝑃ℎ𝑜𝑛𝑒 𝑖|𝑋𝑗) = 1.39
𝑖=1  

The knowledge of the 𝑃ℎ𝑜𝑛𝑒 𝑖  can be extracted using phoneme 

recognizer.  

The other two techniques assign a weight for each separate 

phoneme clusters explicitly which will be referred as phoneme 

posterior and relevance factor weighted score (PPRFWS) as shown 

below: 

𝑃𝑃𝑅𝐹𝑊𝑆 =
1

𝑁
 ∑ 𝐶𝑖  ∑ 𝑝𝑗

(𝑖)
(𝑋𝑗)  × 𝐿𝐿𝑅𝑗

(𝑖)
(𝑋𝑗)

𝑁

𝑗=1

39

𝑖=1

 (7) 

where 𝐶𝑖 is phoneme relevance factor for 𝑖𝑡ℎ phoneme.  

The phoneme with high discriminability will have a higher 𝐶𝑖 

which is estimated in two ways. One is based on explicit 

assumption about the data which is derived using KL divergence 

on the development set. The KL based PPRFWS is computed by 

taking the  𝐶𝑖 =
𝐾𝐿𝑖

∑ 𝐾𝐿𝑖
39
1

  which will be referred as PPRFWS_KL. 

The other is completely learnt on some dataset with not specific 

assumptions where the phoneme relevance factors  𝐶𝑖  , 𝑖 ∈ [1,39] is 
learned by the linear regression (LR) classifier where the objective 

function targets to minimize the EER on the development set, 

which will be referred as PPRFWS_LR. 

 

5.  EXPERIMENTAL RESULTS 

The proposed scoring methods are used to fuse the scores from 39 

phoneme specific models (refer Figure 1) and the results are 

tabulated in Table 2. These results show that PPWS scoring, which 

treats all the phoneme classes equally, is outperformed by 

PPRFWS_KL and PPRFWS_LR, which involve class-wise 

weightings. Additionally, PPWS_max which assigns a frame to a 

single phoneme does not perform as well any of the other proposed 

scoring methods that fuse all 39 scores. 

Additionally, while state-of-the-art features such as STMF 

features, which give an EER of 7.2% on ASVspoof 2017 V2.0 

evaluation set, cannot be employed in the proposed framework 

since they are long term (utterance level) features, but can be fused 

with the proposed systems. This was evaluated by fusing the 

proposed PPRFWS_LR system with the STMF system [14] which 

resulted in an EER of 6.18%. Finally, we carried out some 

empirical tests to determine if dropping scores corresponding to 

any of the phonemes provided any benefit but it was observed that 

the best results were always obtained when all 39 scores were 

taken into consideration. Also, similar finding is observed for 

SCMC [10, 21] features which is the second best state-of-the-art 

short term frame level feature. 

 

Table 2.  Evaluation results in terms %EER for the baseline system 

and the proposed systems on ASVSpoof2017 V2.0 corpus 

(Pooled train and development set is used for training phase) 

 

 System %EER 

Baseline RFCC [10, 21]  11.22 

Proposed 

Systems 

PPWS 10.70 

PPWS_max 11.57 

PPRFWS_KL 9.97 

PPRFWS_LR 9.28 

Fusion STMF [14] + PPRFWS_LR 6.18 

 

6.  CONCLUSION 

This work investigates how the ability to discriminate between 

genuine and spoofed speech varies across different phonemes and 

the consistently higher level of discriminability for frames 

associated with certain phonemes, especially fricatives, nasals, 

stops and pause indicates that these types of phonemes are more 

informative in the detection of replay attacks. We have then 

proposed four different fusion scoring methods to incorporate 

phonetic information using phoneme specific models of genuine 

and spoofed speech and experimental validation on the 

ASVspoof2017 V2.0 corpus demonstrates that all approaches that 

take into account all the phoneme specific models outperform the 

baseline phoneme independent modelling approach. 
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