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ABSTRACT

Recently, deep neural networks (DNNs) have achieved in-
credible performance in speaker verification. However, most
of which remains sensitive to environment noise. In this
paper, we propose an end-to-end speaker verification frame-
work to enhance the robustness against background noise.
The proposed framework first utilizes convolutional recurrent
network (CRN) to address speech separation. Then the output
of the middle layer of the CRN is used as the auxiliary feature,
and together with the robust Filter banks (Fbanks) feature of
noisy speech are fed to the speaker verification system. The
speech separation and speaker verification are jointly op-
timized. Compared with deep speaker and DNN/i-vector,
systematic evaluation indicates that the proposed algorithm
can obtain a better performance in noisy conditions.

Index Terms— Robust speaker verification, Speech sep-
aration, Convolutional recurrent network, Deep speaker

1. INTRODUCTION

Speaker verification (SV) is a task of judging whether it is
a declared speaker identity through the information of the
speech. Depending on whether the speech content of en-
rolling and testing are the same, it can be divided into text-
dependent SV [1] and text-independent SV [2, 3]. Apparent-
ly, with no limitation on content during test, the text indepen-
dent SV is more friendly to users. At the same time, it’s also
more difficult than text-dependent SV. This work focuses on
text-independent SV.

I-vector [4] is a well known method which greatly im-
proved the performance of SV. The method consists of several
steps:

• Firstly, training a universal background model (UBM)
[5] with a large amount of speech to collect sufficient
statistics for extracting i-vector.

The first two authors contributed equally to this work.

• Secondly, extract speaker i-vector, so hight-dimension
statistics can converted into a single low-dimensional
i-vector that representing the identity of the speaker.

• Finally, training probabilistic linear discriminant anal-
ysis (PLDA) [6] model, and produce verification scores
by calculating distance between i-vector from different
utterances.

Influenced by DNN powerful modeling ability and its
successful application in automatic speech recognition (AS-
R) [7], Lei et al [8] used DNN to replace the gaussian mix-
ture model (GMM) for acoustic modeling to extract i-vector.
DNN can directly model the phoneme state space instead of
the complex acoustic space, and significant improvements
over the traditional GMM. Another effective technique is to
use DNN to extract deep bottleneck features [9, 10] or obtain
speaker representations directly [11, 12]. Driven by big data
and increased computing power, end-to-end SV [12, 13, 14]
can achieve better performance than classic i-vector approach.
The output of the neural network is low-dimensional vector
called embedding (also known as d-vector) which is adopted
to represent the speaker identity.

Although research on SV has achieved big progress, noise
is still a inevitable factor in real environment that impairs the
performance of SV systems. A common strategy is using a
frontend processing method to enhance both training and test
set first, and conducting SV system on the enhanced training
set. It may be able to improve the SV performance since the
features may become cleaner after enhancement. However,
the performance of this approach is highly dependent on the
performance of the separation frontend [15].

More recently, Tan and Wang [16] incorporated a convo-
lutional encoder-decoder (CED) and long short-term memo-
ry (LSTM) into the CRN architecture for speech separation.
We speculate that the low-dimensional output of LSTM in
CRN can be used as robust bottleneck features in SV system.
In this paper, we integrate the speech separation into end-to-
end speaker verification system, and jointly optimize the two
modules both of which are based deep learning. Experimen-
tal results show that the proposed method outperforms the re-
cent proposed end-to-end SV method deep speaker [12] and

6101978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



DNN/i-vector [8].

The rest of this paper is organized as follows. Section 2
briefly reviews the speech separation, end-to-end SV frame-
work and triplet loss. Section 3 describes the framework pro-
posed. Experiments and analysis are presented in the Section
4. Finally, summarize in Section 5.

2. RELATED WORK

2.1. Speech Separation

The purpose of speech separation is to extract the target
speech from background interference [16, 17, 18, 19]. In
recent years, mapping-based supervised speech separation
have been proposed successively [20, 21], and achieves very
promising separation performance in both matched and un-
matched test conditions. For supervised speech separation,
the usually input feature is magnitude spectrum. Besides,
power spectrum, or other forms of spectra such as mel spec-
trum, was also used instead of magnitude spectrum. A log op-
eration is usually applied to compress the dynamic range and
facilitate training. In terms of cost function, mean squared
error (MSE) is usually used. The loss function is given by:

Lss =
1

N

N∑
i=1

∥∥Yi − Ŷi

∥∥2 (1)

where N is the number of T-F unit, Yi and Ŷi represent the
short-time Fourier transform (STFT) of pure speech and esti-
mated under the i-th T-F unit, respectively.

The speech separation structure used in this study is based
on CRN which is proposed in [16]. The CRN leads to consis-
tently better objective speech intelligibility and quality com-
pared with LSTM model [22]. Moreover, the CRN has much
fewer trainable parameters. The structure of CRN is shown
in Figure 1 (speech separation part). We use the magnitude
spectrum of the mixture as the input feature. To compress the
dynamic range of the value, a cubic root compression is ap-
plied. Then, the feature is normalized by zero mean and unit
variance.

2.2. End-to-end Speaker Verification

End-to-end SV system has many types of architecture [1, 2,
12, 13]. Heigold et al. [1] used the last frame output of the L-
STM as the utterance-level embedding for SV. In [14], Snyder
et al. utilized a type of network-in-network (NIN) nonlinear-
ity to form the speaker embedding. In this study, deep residu-
al convolutional neural network (ResCNN) is used for SV as
shown in Figure 1. For deep ResCNN, the CNN is effective
for reducing spectral variations and modeling spectral correla-
tions in acoustic features [23], and the deep network can bet-
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Fig. 2: End-to-end speaker verification system architecture
based triplet loss.

ter represent long utterance than shallow networks. The triplet
loss based end-to-end SV architecture is shown in Figure 2.
In the training stage, the frame embedding output from the
deep model through pooling layer to form the utterance em-
bedding and then normalized to the unit hyper-sphere through
L2 normalize. In the evaluation stage, enrolled utterance em-
beddings from the same speaker are averaged to get speaker
embeddings. Euclidean distance between enroll speaker em-
beddings and test utterance embeddings are calculated, which
can be utilized for the final speaker verification decision.

Triplet loss [24] takes three samples as input, an anchor
(an utterance from a specific speaker), a positive example (an-
other utterance from the same speaker), and a negative exam-
ple (an utterance from another speaker). Aiming to minimize
the within-class distance and maximize the between-class dis-
tance. The loss Lds for M triplets is defined as:

Lds =

M∑
i=1

[Eap
i − Ean

i + α]+ (2)

where Eap
i and Ean

i represents the Euclidean distance be-
tween anchor positive and anchor negative, respectively, α
is an empirical value used to force a limit between the two
distances. The operator [x]+ =max(x,0) represents triplet se-
lection.

3. JOINT TRAINING

3.1. Joint training

As illustrated in Figure 1, the key idea for joint training is to
concatenate a deep ResCNN-based speaker verification and
a CRN-based speech separation to form a larger and deeper
neural network. The output of the LSTM in CRN is used as
auxiliary feature, and together with the robust Fbank feature
of noisy fed to the speaker verification model to estimate the
speaker identity information. In training phase, the weights
in all modules are jointly adjusted. The loss function of the
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Fig. 1: Network architecture of our proposed speaker verification architecture.

speech separation and the deep speaker are employed together
as the loss function of joint training architecture. The loss
function can be written as:

Ljt = βLss + Lds (3)

where β is a weighting factor to adjust the trade-off between
losses. Lss represent the loss function of the speech separa-
tion part (E.q 1). Lds represent the loss function of the deep
speaker part (E.q 2).

3.2. Network architecture

The proposed network input is encoded into a low dimension
latent space by several convolutional layers and then the fol-
lowing LSTM models the sequential information of the latent
feature. The output of the LSTM is converted back to the o-
riginal input shape by the decoder. CRN is recently invented
architecture which combines the feature extraction capabili-
ty of CNNs and the temporal modeling capability of recur-
rent neural networks (RNNs). The output of the LSTM is
used as auxiliary feature for SV. For SV part, we use ResCN-
N architecture which contains 4 convolution layers, 4 residu-
al blocks (ResBlocks), 1 average pooling (AP) layer, 1 fully
connected layer (FC) and length normalization (LN) to pro-
duce utterance-level embedding.

A more detailed description of the architecture is pro-
vided in Table 1. The input size and the output size of
each layer are specified in featureMaps × timeSteps ×
frequencyChannels format. The layer hyper-parameters are
given as (kernelSize, strides, outChannels) for convolution
and deconvolution layers. In speech separation part, the
kernel size is 1×3 (Time×Frequency), the stride length is
1×2 (Time,Frequency). We do not apply padding on time

or frequency. The number of feature maps in each decoder
layer is doubled by the skip connections. In SV part, a basic
ResBlock layer is added to each adjacent convolutional and
deconvolutional layers.

4. EXPERRIMENTS

4.1. Experimental setup

We use 797 female speakers to evaluate the experiment. A-
mong the speakers, 402 are from NIST SRE 2006 (8conv con-
dition) [25] and 395 are from NIST SRE 2008 (8conv condi-
tion) [26]. For each target speaker, eight two-channel tele-
phone conversations are provided, and each conversation is
about two minutes. For each utterance, the large chunks of
silence are removed by voice activity detect technology. Ut-
terances are then mixed with babble or speech-shaped noise
(SSN) at signal-to-noise ratios (SNRs) of {-5, 0, 5, 10} to pro-
duce the noisy utterances. Each noise is about four minutes
and is divided into two non-overlapping time portions. The
first and the second parts are used for training and testing, re-
spectively. In addition, to test the generalization performance
of the proposed model, the SNRs of {-3, 3, 8, 12} are also
involved as SNR-unmatch condition.

The proposed method and deep speaker are implemented
by using open-source AI framework PyTorch [27]. For the
proposed method, the parameter β is tuned to balance the two
training losses and set to 0.1 according to our experiments.
The models are trained with Adam optimizer [28]. We set
learning ration to 0.001. Margin α is set to 0.1 and a mini-
batch size of 64.

Equal error rate (EER) is utilized as evaluation indicator
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Table 1: Architecture of the proposed method. Here T de-
notes the number of frames in the STFT magnitude spectrum.

Component Layer Hyperparameters Output size

Speech

Separation

reshape_1 - 1×T×161

conv2d_1 1×3,(1,2),8 8×T×80

conv2d_2 1×3,(1,2),8 8×T×39

conv2d_3 1×3,(1,2),16 8×T×19

conv2d_4 1×3,(1,2),16 16×T×9

conv2d_5 1×3,(1,2),16 16×T×4

reshape_2 - T×64

lstm_1 64 T×64

lstm_2 64 T×64

deconv2d_1 1×3,(1,2),16 16×T×9

deconv2d_2 1×3,(1,2),16 16×T×19

deconv2d_3 1×3,(1,2),8 8×T×39

deconv2d_4 1×3,(1,2),8 8×T×80

deconv2d_5 1×3,(1,2),1 1×T×161

Deep

Speaker

reshape_1 - 1×200×128

conv2d_1 5×5,(2,2),(2,2),16 16×100×64

Res_1
[ 3×3,16]

[ 3×3,16]
16×100×64

conv2d_2 5×5,(2,2),(2,2),64 64×50×32

Res_2
[ 3×3,64]

[ 3×3,64]
64×50×32

conv2d_3 5×5,(2,2),(2,2),128 128×25×16

Res_3
[ 3×3,128]

[ 3×3,128]
128×25×16

conv2d_4 5×5,(2,2),(2,2),256 256×13×8

Res_4
[ 3×3,256]

[ 3×3,256]
256×13×8

AP - 256×4×1

reshape_2 - 1024

FC - 512

LN - 512

to measure the overall performance of the system. The EER
represents the value at which the false positive rate equals to
the false negative rate in test set.

Table 2: EER (%) under matched SNR conditions with SSN

SNR -5dB 0dB 5dB 10dB Ave
System EER EER EER EER EER

1) GMM/i-vector 11.26 7.37 6.06 5.93 7.65
2) DNN/i-vector 10.87 5.97 5.59 5.74 7.04
3) Deep Speaker 8.19 6.64 5.61 5.52 6.37
4) Proposed 7.53 6.02 5.41 5.21 6.04

4.2. Experimental results

We compare the proposed method with GMM/i-vector,
DNN/i-vector and deep speaker. Table 2 shows the result-
s with SSN under the matched SNR condition. Compared
with DNN/i-vector and deep speaker the proposed method

Table 3: EER (%) under matched SNR conditions with bab-
ble

SNR -5dB 0dB 5dB 10dB Ave
System EER EER EER EER EER

1) GMM/i-vector 13.23 9.01 7 5.8 8.76
2) DNN/i-vector 11.76 6.44 5.84 5.67 7.43
3) Deep Speaker 7.05 5.84 5.27 5.14 5.83
4) Proposed 6.60 5.67 5.5 5.35 5.78

Table 4: EER (%) under unmatched SNR conditions with
SSN

SNR -3dB 3dB 8dB 12dB Ave
System EER EER EER EER EER

1) GMM/i-vector 11.47 6.75 5.97 5.67 7.47
2) DNN/i-vector 11.38 5.9 5.78 5.03 7.02
3) Deep Speaker 7.35 5.88 5.37 5.16 5.94
4) Proposed 6.70 5.59 5.3 5.17 5.69

obtains 14.21% (from 7.04% to 6.04%) and 5.18% (from
6.37% to 6.04%) relative improvement for EER, respectively.
For the babble noise, we can see similar results, as shown in
Table 3, that the improvements are about 22.21% and 0.86%
compared with DNN/i-vector and deep speaker, respectively.

Table 4 shows the EER results under unmatched SNR
conditions with babble noise. The proposed method also out-
performs the DNN/i-vector and deep speaker. Compared with
the DNN/i-vector, the proposed method improves (relative)
the EER around 18.95% on average. Compared with the deep
speaker, The proposed method improves (relative) the EER
around 4.21% on average. In addition, we can also find that
the proposed method and deep speaker are not only better than
i-vector, but also less affected with SNR decreasing.

5. CONCLUSION

In this paper, we propose an architecture integrating speech
separation and deep speaker for robust end-to-end text in-
dependent speaker verification. The systematic evaluation
shows that our proposed method outperforms the state-of-the-
art algorithms (DNN/i-vector and deep speaker). Moreover,
we find that end-to-end approach is much better than DNN/i-
vector in low SNRs condition. The results also indicate that
the deep bottleneck feature extracted from speech separation
is robust for speaker verification in noisy environment.
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