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ABSTRACT

Code-switch language modelling is challenging due to lim-
ited linguistic resources and less predictable word sequences.
Many state-of-the-art systems rely on linguistic information
such as Part-of-Speech (POS) or classes to generalize the
lexicon. Such systems generally use multi-task learning or
conditional network to improve over baseline RNN language
model by providing a better word prediction. To overcome
the data sparsity through continuous space modelling and
back-off mechanism, we propose to constrain the word and
class embedding in a common space by means of cross-
lingual word embedding, and to make use of the predicted
class embedding as a back-off scheme when word prediction
model is weak. The proposed word and class Common Space
embedding Language Model (CSLM) is able to model word
prediction better and is more robust when only sparse training
data are available. The CSLM outperforms the state-of-the-
art language model by 9.7% on the code-switch SEAME
corpus.

Index Terms— code-switch, language modelling, cross-
lingual embedding

1. INTRODUCTION

Code-switching or code-mixing is a phenomenon in writ-
ing or conversation where two language systems are mixed
within a sentence, i.e. intra-sentential, or between two sen-
tences, i.e. inter-sentential. This is an increasingly common
linguistic behavior amongst bilingual speakers [1]. Intra-
sentential code-switch speech poses a significant challenge
to ASR systems [2]. This is because code-switch introduces
more vocabulary choices at each prediction step due to words
from another language, at the same time, it occurs sparingly
and freely without adhering to rigid syntactic or grammatical
rules [3]. Speaker may choose when to and not to switch
given the same preceding context.

The challenge is further exacerbated because there are far
less code-switch linguistic resources than monolingual ones.
In general, we rely on large text corpus in written form, such
as newspapers and books, for monolingual language mod-
elling. As code-switch takes place mostly in spoken form, we
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cannot find as much documented code-switch text as mono-
lingual text for language modelling.

Many existing solutions leverage on linguistic informa-
tion such as POS tags [4], language ID [5,6] and word classes
[7] or its combination [8—10] to further generalize the lexi-
con, under the assumption that a generalized representation
of the word sequence should be observed in the training set or
to serve as an indicator for better prediction. Others [11-13]
seek to detect code-switch points. Code-switch permission
constraints [14, 15] are also used to incorporate code-switch
probability into the language model. This has been shown to
improve the WER on ASR systems, however, it is also pointed
out that speakers, under a natural setting, may not abide by
the proposed linguistic constraints [3]. In [16—18], the code-
switch language model is improved with additional artificially
generated code-switch data.

To overcome the data sparsity problem, people have at-
tempted three broad categories of techniques. 1) Extending
the input dimension by concatenating lexicon with other aux-
iliary features c; such as class or POS tags, as shown in the
input layer of Fig. 1(a) and Fig. 1(b). 2) Utilizing multi-
task learning by making use of additional supervisory sig-
nal Cyy; such as class, POS tag or code-switch point labels,
as illustrated in the output layers of Fig. 1(a) and Fig. 1(b).
This serves as a scaffold for better generalization and learn-
ing. 3) Sharing of latent layers s;, i.e another auxiliary net-
work which is trained to optimize on POS tag prediction could
share its last or intermediate layer to the word prediction net-
work as a form of information transfer. Illustrated in Fig. 1(b),
latent layer s¢ for predicting class ¢y is transferred to the
word prediction network [19]. A combination of such tech-
niques can achieve performance superior to a baseline RNN
based language model [20] in which the probability of pre-
dicting the next word is simply conditioned upon the hidden
recurrent output, p(wsy1|w<s) = p(wii1]st).

When the language model is jointly trained on input w;
and c¢;, we can understand the model mathematically as con-
ditioning the probability of the predicted word given the word
history p(wyy1|w<¢) with the auxiliary class ¢,

plwesi|wet) = p(wes|ce, se), (D
in which s; is the hidden recurrent state that contains the his-
tory for both previous lexicon and auxiliary class. However,
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(a) Class based neural language model.
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(b) Multi-task language model with sharing of latent layers.

Fig. 1. Architectures for multi-task and auxiliary feature
based approaches. w is the vector for word and y is the out-
put vector before softmax. Y and C are the one-hot label for
lexicon and class respectively.

this formulation, that predicts w41 with ¢, departs from the
statistical class-based language model [21], in which we are
predicting the next word w; 1 conditioned on the next auxil-
iary class c;41.

p(wisi|w<r) = plwita]eir1)p(cerale<t) (2
Due to this difference in formulation, the prediction of the
word w1 in Fig. 1 could not benefit directly from the predic-
tion of the auxiliary class c;4; which could serve as a back-
off when the class sequence is observed but not the word se-
quence. This paper seeks to address this problem by com-
bining the strength of auxiliary class and back-off scheme as
summarized in the formulation below.

Pwesi|wer) = plwepr|wey, ce41)p(ceyr]e<t) ()

We realize the above formulation using a recurrent neural net-
work and would expect the predicted c;;, which is more
reliable than word prediction with limited data, to provide
stronger back-off to the word prediction network. We im-
plement this model through 1) sharing a common embedding
space which allows for an architectural improvement over the
traditional multi-task based language model and at the same
time 2) using the predicted embedding of the auxiliary class
cy+1 as the input to the word prediction network together with
Wt.

2. COMMON SPACE LANGUAGE MODELLING

The main difference between the proposed CSLM in Fig. 2
and the models illustrated in Fig. 1 is the usage of output from
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Fig. 2. Common Space embedding and class back-off Lan-
guage Model (CSLM). U and U¢ are the projection matrices.

the class prediction as a back-off information to the word pre-
diction Y;4 1, represented by the shaded box. The main chal-
lenge in realizing the network illustrated in Fig. 2, is the dis-
crepancy in the vector space of the output vector ¢;; and
the input word embedding wy. Since, traditionally, the output
label for ¢4 is the auxiliary class label Cyyq, that is rep-
resented in a different embedding space than w;. Thus by
passing this embedding to the input of the word prediction
network, the network has to learn another transformation ma-
trix for the class model. This limits the useful information
transferred and in the same time embedding information is
lost.

In this model we choose to predict the class embedding of
the next class, i.e. c;11 directly so that the input and output
of the auxiliary class prediction reside in the same embedding
space. Consequently, the input embedding w; also resides in
the same embedding space by using pre-trained cross-lingual
word embedding.

2.1. Cross-lingual Word Embedding

Besides the common space between words and classes, it is
also beneficial to encode the words in both code-switching
languages in the same embedding space. The cross-lingual
word embedding is derived using the same technique present
in BiSkip [22], whereby embeddings are derived from aligned
parallel sentences. Resultant word embeddings of related
words are grouped together and at the same time, the syntac-
tic information is preserved. This is done by extending the
Skip-gram [23] model which predicts the context using the
word of interest, to jointly predict the context in the aligned
languages and vice versa. Thus, taking English and Chinese
as [y and Iy respectively, the embedding will preserve the
quality of the monolingual embedding (i.e. I; — l1,lo — I3)
and at the same time tie the two monolingual embedding
together using the constraint of its counterpart language (i.e.
ly = la,lo — ly). Using pre-trained cross-lingual word
embedding in the language model also implies that we have
incorporated information from the large parallel corpus. This
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has a two-fold effect, firstly, the embedding for individual
words will be more representative since each word will be
learned with more context. Secondly, rare words in the
SEAME training set which some are only seen once will
benefit from these large corpora.

2.2. Back-off Class Embedding

The pre-trained cross-lingual word embedding is used for wy,

wy = vecpiskip(wordy), @)
¢t = k-means(wiey ), ()

and the same embedding space is used for c; by k-means clus-
tering of all word embeddings in the vocabulary V. In CSLM,
the label for the input ¢; is the vector c;4; representing the
centroid of one of the k-means clusters.

We expect that the class embedding prediction has a pro-
found impact on the word prediction, because the class em-
bedding naturally contains more information than the label,
due to denser representation. As it is being predicted di-
rectly, ensuring less embedding information loss than pre-
dicting only the class label. The class embedding provides
the back-off to the unseen or rare word sequences, of which
the class sequences have been observed in the training set. In
the case that the correct class is being predicted for the cor-
responding word lexicon, a more informative input is being
provided for the model and thus greatly reducing the perplex-
ity.

3. EXPERIMENT

The parallel corpora from OpenSubtitle [24] and TedTalk [25]
are used for training cross-lingual word embeddings. The
combined corpus comprises 147M tokens and a total vocab-
ulary of (51 4+ 260) K, for Chinese and English respectively.
The corpus covers 92% of the SEAME English vocabulary
and 100% Chinese vocabulary. SEAME Train set is added to
the corpus to complete the coverage for English vocabulary.
The corpus used for training the language model is SEAME
(South-East Asia Mandarin-English) corpus [26], which is
a spontaneous conversational code-switch corpus recorded
under the setting of casual conversation or interview. For the
purpose of language modelling, we use the audio transcrip-
tion. In the pre-processing step, hesitation, paralinguistic
markers and punctuations are removed and the Mandarin
text is segmented [27]. The composition of the data set is
summarized in Table 1.

Table 1. SEAME Phase II Database. Switch Point Fraction
is the average code-switch points over word boundaries per
utterance, it indicates complexity of the code-switch text.

Train set | Dev set | Eval set
Tokens 1.2M 65K 60K
SPF 0.23 0.23 0.23
Vocabulary (CN+EN) | (8 + 17)K - -

We choose 300 dimensions for the word embedding and
200 clusters for the class embedding. The embedding space is
initialized using the aforementioned pre-trained word embed-
ding covering the vocabulary of the SEAME Train set, and
made non-trainable. We use LSTM [28] which has been the
state of the art in neural language modelling. The recurrent
layers for both lexicon and class are set to be 2 and the hidden
state dimensions 600 and 300 respectively following the em-
bedding dimension. The number of layers and the dimensions
are also comparable to the previous benchmarks, in which a
similar LSTM model [19] is used with 2 recurrent layers and
500 hidden dimensions.

Yt+1 = U(LSTMlewicon([wt; Ct+1])) (6)

Ct+1 = UC(LSTMclaSS(Ct)) (7)

Additionally, drop-out of 0.4 is applied in between recurrent
layers and not in between recurrent time steps, to force the
preceding recurrent layers to provide more robust represen-
tations and at the same time preserve the information flow
between recurrent neurons [29]. For the auxiliary class pre-
diction, MSE is used as the loss function and for lexicon pre-
diction, cross entropy is used. The cross entropy loss is,
N

1
Loss = N Z Y In(p;), ®)
i=t+1
y
€i+1
p Zyocab evi ( )

J

In Equation 8, Y; is the ground truth one-hot vector, P; is
the normalized probability of the model to predict each word
in the vocabulary and N is the number of time steps. Since
Tensorflow!, by default, computes the cross entropy in nat
rather than in bit, the perplexity is, PPL = el9%%,

3.1. Results

To gain a better understanding of the effect of each proposed
improvements, we conducted an ablation test to single out the
perplexity contribution of each change. The first experiment
in Table 2 reports the results of Class LSTM presented in
Fig. 1(a) as the baseline. The inputs are word and class label
of the current time. In the next two experiments, we imple-
ment CSLM with the pre-trained word and class embeddings.
To illustrate the idea of using c; as back-off is better than
using ¢, as the auxiliary input along with w;, the shaded box
(refer to Fig. 2) of CSLM+c; orqcie 1s Teplaced with the true
class embedding of c;, while for CSLM+ct1 oracie it is re-
placed with true class embedding of c;+;. Results show that
if we can accurately predict the class embedding, ¢ is more
useful than ¢;. Because a strong prior is provided for the word
prediction and the model is less confused on the next word,
similar to a statistical class-based language model.

"https://www.tensorflow.org
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To show the effect of word class common space embed-
ding against unconstrained embedding space, the next two
experiments differ only in the output label for the auxiliary
class prediction network. The former uses one-hot class
Label which means the output embedding space is not con-
strained, the latter uses class embedding (i.e. CSLM) which
constrains the embedding space to be same as the word em-
bedding. Since the class label does not place a constraint
on the output vector of the predicted class, the information
shared is less useful and also the auxiliary model may lose
some valuable information in maximizing the prediction ac-
curacy of the class label. Only when the target vector of
the next class is used, does the model achieve the greatest
perplexity reduction.

Table 2. Ablation Analysis for CSLM

Model PPL Dev | PPL Test
Class LSTM 144.27 143.50
CSLM + ¢t oracie 141.18 143.43
CSLM + Ci41,0racle 5.01 5.91
CSLM + Label 141.18 143.43
CSLM 128.12 129.85
+ Multi-task 128.54 128.02

This also demonstrates the effectiveness of predicting the
auxiliary class first then the word as expressed in Equation 3.
More specifically, this model computes the probability of the
next word based on the word history as well as the predicted
class. Thus, the model is more robust in generalizing for un-
seen sequences in the testing phase as long as an appropri-
ate class embedding could be provided for the input word.
Further multi-task objective provides less improvement which
confirms that the class information is being efficiently trans-
ferred from the auxiliary network. We achieve 10.7% per-
plexity reduction over the baseline.

4. EVALUATION

To show that CSLM tackles the problem presented by code-
switch text, we compare the improvement in perplexity of
CSLM to Class LSTM model across different segment of the
SEAME Eval set. The perplexity reduction in the code-switch
word sequences of the Eval set is 24.5%, while the reduction
over monolingual word sequences is 18.2%. It is expected
that the model will also improve the monolingual segment,
however, since the code-switch word sequences suffer more
from data sparsity, the CSLM model is more effective to code-
switch word sequences than to monolingual ones.

Table 3. Perplexity for different language segments in Eval
set compared to baseline class-based LSTM.

Model Code-switch | Monolingual
Class LSTM 196.94 138.00
CSLM 148.63 112.91

It should be noted that the improvement in the perplex-
ity of LSTM and Multi-task [19] language model in Table 4
is in part due to the increase in the training set over previ-
ous models which are carried out on SEAME Phase 1. Table 4
summarize the improvements in perplexity for various combi-
nation of aforementioned techniques. There is 9.7% perplex-

Table 4. Language model baseline on SEAME test set. Mod-
els marked with T indicate that training and testing are done
on SEAME Phase I which approximate to 60% of SEAME
Phase II in term of total tokens. Models marked with * indi-
cate training and testing done on SEAME Phase II.

Model PPL Dev | PPL Eval
RNNLMT [4] 246.60 287.88
FL + OF' [4] 219.85 239.21
FLMT [10] 177.79 192.08
LSTM* [19] 150.65 153.06
Multi-task* [19] 141.86 141.71
CSLM 128.12 129.85
CSLM + Multi-task | 128.54 128.02

ity reduction between CSLM + Multi-task over the previous
state-of-the-art code-switch language model Multi-task in Ta-
ble 4. CSLM draws strength from pre-trained cross-lingual
word embedding, the successful sharing of this information
from the auxiliary class prediction to the lexicon prediction
with minimal loss and providing strong back-off. Compared
to previous models which use multi-task objective, there is
generally lack of strong back-off scheme. Without a common
embedding space, the lexicon model would have to solve the
additional task of feature extraction since the useful feature
from auxiliary class and lexicon embedding are from differ-
ent space.

5. CONCLUSION

The experiments support the proposed CSLM in alleviating
the sparsity issue in code-switch language modelling. The
ablation analysis justifies the claim of using predicted class
embedding c;;; as a back-off to word prediction and con-
straining a shared embedding space between the word input
and class output. We achieve 10.7% perplexity reduction over
the baseline and 9.7% perplexity reduction over the previ-
ous state-of-the-art model. We show that the improvement in
code-switch word sequence of the SEAME Eval set is greater,
making this method a good way for code-switch language
modelling.
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