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ABSTRACT
Code-switching occurs when the speaker alternates between two or
more languages or dialects. It is a pervasive phenomenon in most
Indic spoken languages. Code-switching poses a challenge in lan-
guage modeling as it complicates the orthographic realization of
text, and generally, there is a shortage of code-switched data. In
this paper, we investigate data augmentation and adaptation strate-
gies for language modeling. Using Bengali and English as an exam-
ple, we study augmenting the code-switched transcripts with sepa-
rate transliterated Bengali and English corpora. We present results
on two speech recognition tasks, namely, voice search and dicta-
tion. We show improvements on both tasks with Maximum Entropy
(MaxEnt) and Long Short-Term Memory (LSTM) language mod-
els (LMs). We also explore different adaptation strategies for Max-
Ent LM and LSTM LM, demonstrating that the transliteration-based
data-augmented LSTM LM matches the adapted MaxEnt LM which
is trained on more Bengali-English data.

Index Terms— data augmentation, language model adaptation,
code-switched automatic speech recognition

1. INTRODUCTION

Code-switching1 is prevalent in many multilingual communities,
wherein a speaker alternates between two or more languages, or
language varieties. It is very common in most Indic languages, as
many Indic speakers are at least trilingual, speaking various combi-
nations of their native language with words borrowed from the more
commonly-spoken Hindi and English languages. For example, it
is common to see combinations such as Bengali-English, Bengali-
Hindi, and Bengali-Hindi-English in daily speech. Naturally, this
leads to the same word being transcribed differently under different
writing systems. Given that all forms of these transcriptions are cor-
rect, consistent normalization of code-switched text becomes crucial
for statistical models.

Two threads of research have appeared in the literature for ad-
dressing these challenges. The first approach uses multi-pass speech
recognition. Here, regions of code-switching are first identified
using acoustics based language identification methods and then
rescored with corresponding monolingual acoustic and language
models [2, 3, 4]. The second approach is the use of multilingual
acoustic and language models in a single recognition pass [5, 6].
Both approaches have limitations. While the former approach re-
quires several passes and depends on the quality of the language
identification system, the latter approach requires linguistic exper-
tise.

1Some linguists argue, code-mixing specifically refers to intra-sentential
code-switching [1]. In this paper, we use code-mixing and code-switching
interchangeably.

The lack of sufficient code-switched training material poses a
challenge for language modeling. To address this and provide con-
sistent normalization, a more recent approach proposed the use of
transliteration [7]. It yielded significant gains in automated speech
recognition (ASR) performance. In this paper, we present a generic
approach for training language models for ASR that can leverage
code-switched text. We use the Bengali-English language pair as an
example to evaluate and analyze our approach. The approach builds
on the work presented in [7] and compares data augmentation and
adaptation strategies to address code-switched ASR.

2. PREVIOUS WORK

Data augmentation strategies to address the challenges of code-
switching have been explored over the last couple of decades. One
of the first pieces of work used machine translated text [3] to aug-
ment available code-switched text. The authors show that addition
of artificially synthesized code-switched text to build the recurrent
neural network (RNN) language models achieved up to 16.9% rel-
ative reduction in perplexity and a 2.7% relative improvement in
mixed error rate on the SEAME corpus [8]. Inspired by the Equiv-
alence Constraint Theory [9], Pratapa et al. [10] recently proposed
to generate grammatically valid artificial code-mixing data using
parallel monolingual sentences. The synthesized data helped reduce
the perplexity of an RNN LM. The authors also claim that randomly
generated code-switched data does not help to decrease perplexity of
code-switched text. In [11], the authors model this linguistic equiv-
alence constraint as a syntactic inversion constraint into a statistical
code-switch language model where the language model is composed
of a code-switched boundary prediction model, translation model,
and a reconstruction model. This approach yielded modest gains on
Chinese-English ASR.

More recently, [12] proposed to alter the structure of a cell in
the RNN to include language-specific components that model code-
switched text. Pretraining the LM on synthetic text from a genera-
tive model estimated using the training data, then fine-tuning it on
the same training data, the authors observed up to 13% relative per-
plexity improvements. Other work on data augmentation has ex-
plored the use of monolingual interpolated LMs trained separately
on monolingual texts [6]. In [13], the authors proposed three ways
to augment code-switched Frisian-Dutch data for LMs: text gen-
erated from RNN LMs trained on speech transcripts, use of ASR
transcripts, and translated data from an external corpus. They report
significant reductions in perplexity and ASR performance improve-
ments on this low-resource-high-resource language pair.

The process of converting sequences from one writing system
to another, i.e., transliteration, has been used extensively in machine
translation [14, 15, 16] and retrieval [17]. Transliteration of Indic
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languages to Latin script and vice-versa is particularly challenging
due to the presence of a large combination of consonants, vowels,
and diacritics which result in non-unique mappings and non-standard
spellings. The first use of transliteration to normalize code-switched
text consistently for ASR was proposed in [7].

In this paper, we propose a set of data augmentation strategies
based on transliteration. Different from previous work which in-
troduces external monolingual textual resources, our experiments
demonstrate the effectiveness of leveraging the code-mixed data it-
self using transliteration. This could be extremely meaningful for
modeling low- and medium-resource languages. We also utilize an
on-the-fly unsupervised method to recognize the language code of
each word, avoiding the extra computational cost of building a high-
quality language identification model. We compare these augmenta-
tion strategies to standard LM adaptation methods, using Maximum
Entropy based LMs and LSTM LMs.

3. LANGUAGE MODELS

We take a rescoring approach to language modeling. The first
pass LM is consistent across all experiments. All the proposed
approaches modify the second-pass LM.

3.1. First-pass LM

The first-pass LM used to generate lattices is an ensemble of 5-gram
language models trained on spoken and written texts from multi-
ple resources. The interpolation weights for the various LMs is de-
termined through Bayesian Interpolation [18]. A second-pass LM,
either a maximum entropy based LM or an LSTM LM, is used to
rescore the N-best lists generated from the first pass. The second-
pass LM is interpolated log-linearly with the first-pass LM. Our
model vocabulary contains 122K words – 89.9% are Bengali, 8.3%
are English, and the rest are numbers and urls.

3.2. MaxEnt LM

In [19], a hierarchical Backoff MaxEnt LM [20] for 2nd-pass rescor-
ing has shown significant reduction in WER for the voice search task
across multiple languages. In this work, we make use of the same
2nd-pass rescoring MaxEnt LM framework described in [19]. We
also employ similar features: word-level N-grams up to 5-grams,
word cluster N-grams from 3- to 5-grams, skip word bigrams up to
a gap of 5 words, left and right skip trigrams up to a gap of 3 words,
plus backoff features. We select the most frequent one billion fea-
tures for our MaxEnt model. Our model vocabulary here is the same
as that of the first-pass LM. Words are clustered to 700 clusters, us-
ing an algorithm similar to [21, 22].

3.3. LSTM LM

Our LSTM LM is a 1024-node, 2-layer model that uses a 1024-
dimensional word embedding features, and a 8192-node sampled
softmax layer. It couples the internal input and forget gates as pro-
posed in [23]. We add markers denoting sentence-start (<S>) and
sentence-end (</S>) to each word sequence in the training corpus.
The model is trained using truncated backpropagation through time
(BPTT) with an unrolling of 20 time steps using a cross entropy
loss between predicted words and reference word labels. Mini-batch
stochastic gradient descent (SGD) [24] is used with an Adagrad op-
timizer [25] and a batch size of 128 sequences. We choose a learning

rate of 0.2. We found it crucial to use gradient clipping on the LSTM
gradients (clipping L2-norm ≤ 1.0).

4. DATA

It is widely recognized that collecting large amounts of code-
switched textual data is challenging, as code-switching is rare in
formal documents. Therefore, the vast majority of our training cor-
pus is composed of code-switched speech transcripts generated by
humans. We note there is a lot of variance in the writing scripts used
by humans when transcribing code-switched speech. We refer to
this Bengali-English code-mixed textual corpus as “CM train”.

We pool an additional Bengali-English corpus (denoted as
“wCM”), derived from web crawls, anonymized, written search
queries, news articles and books. In addition to significant domain
differences between “wCM” and “CM train”, the percentages of
utterances which contain English tokens are very different, as shown
in Table 1. We also make use of an external Indian English corpus

Table 1. Statistics of the data sets (“Latin” refers to the percentage
of utterances that contain Latin tokens).

Data Set %(Latin) #(utterances)
CM train 5.8 1.6 million
wCM 57.8 510 million
inEN 84.3 6.6 million
CM dev 5.2 14.7 k

of speech transcripts (denoted as “inEN”), where we find about 15%
transcripts are in Bengali.

Our development set (“CM dev”) is based on unsupervised data
derived from real voice traffic. All the language models are opti-
mized by minimizing the perplexity on this set.

5. LANGUAGE MODEL ADAPTATION

Efficiently making use of in-domain data to adapt language models
can shift them to a space closer to the actual distribution of test data.
In this section, we investigate the adaptation approaches for MaxEnt
LM and LSTM LM.

5.1. MaxEnt LM Adaptation: Pre-train & Fine-tune

Biadsy et al. [19] have shown that a MaxEnt LM trained on out-
of-domain data can be successfully adapted to certain domains. By
leveraging a small in-domain data, the model showed substantial re-
duction in WER when tested on the same domain. We adopt the
same pre-training and adaptation methodology in this work. We
first pre-train the MaxEnt LM on the corpus that unifies written do-
main text and spoken domain text, as described in Section 4. Then,
upon model convergence (measured on our dev set), we fine-tune
this model on the in-domain data (CM train), as it closely reflects
voice-search distribution. Similar to [19], we adapt the model for
three iterations with the learning rates .25, .2, and .12.

5.2. LSTM LM Feature-based Adaptation

It has been found that feature-based adaptation of recurrent neural
network LMs by incorporating domain-specific auxiliary features
can reduce both perplexity and word error rate [26, 27]. Based on
our prior work on feature-based adaptation [28], we adapt the LSTM
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language models in the following manner: we build a separate em-
bedding layer to encode the writing system information associated
with each word, then concatenate this language code embedding
with word embedding and feed the concatenated embedding to the
hidden layers. We utilize a Unicode based language identification
method. We scan each input token character by character, and decide
based on the Unicode range if each character belongs to the English
alphabet or Bengali one. If all the characters are English characters,
we identify the token as English; otherwise, as non-English (almost
all are Bengali tokens). We embed the language code signals using
a 2-dimensional dense vectors.

6. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the data augmentation and LM adaptation ideas by
building baseline LMs on the corpora described in Sec. 4. The
ASR system employs an LSTM acoustic model which has 5 layers,
with each layer consisting of 768 LSTM cells. The acoustic mod-
els were trained with approximately 4.5k hours of Bengali-English
audio using asynchronous stochastic gradient descent minimizing
Connectionist Temporal Classification (CTC) [29] and state-level
Minimum Bayesian Risk (sMBR) objective functions [30]. ASR
performance is measured using the transliteration-optimized word
error rate (toWER) proposed in [7] which reduces ambiguity and
transcription errors. It is computed after transliterating both the
reference and hypothesis to one writing system corresponding to the
native locale, in this case, Bengali script.

6.1. Data Augmentation Experimental Results

To augment the language models with more training data, we pro-
pose to synthesize text by transliterating this code-mixed corpus to a
monolingual space via a weighted finite state transducer (WFST) as
described in [7].

We first generate two copies of the “CM train” corpus. One copy
is generated by transliterating the text into Bengali writing system
(“CM2BN”) and the second is generated by transliterating all text
to English writing system (“CM2EN”). The rationale behind this
augmentation is that two monolingual transliterated copies would
enrich the surface realization of our training data.

In a second form of data augmentation, we enhance our training
data with the “inEN” Indian English corpus by transliterating it into
the Bengali writing system (“inEN2BN”). The rationale behind this
approach is based on the significant amount of Latin script seen in
the training corpus. We hypothesize that this augmentation will add
reliability in modeling the English word combinations.

MaxEnt LMs: We interpolate the first-pass and MaxEnt LMs
by (0.81, 0.19) for the voice search (VS) and by (0.75, 0.25) for the
dictation task (D). The interpolation weights are chosen empirically.
Training on “CM train” yields a the baseline toWER of 18.4 for VS,
and toWER of 15.4 for dictation.

As shown in Table 2, we find that by transliterating the origi-
nal code-mixed transcript to Bengali space, and adding it to “CM
train” (i.e.“CM train+CM2BN”), we reduce toWER from 18.4 to
18.1 (1.6% relative reduction) for voice search, while maintaining
the performance on dictation.

By transliterating the external English spoken transcript cor-
pus to Bengali space, and adding it to the original data (i.e.“CM
train+inEN2BN”), we reduce toWER from 18.4 to 18.2 (1.1% rel-
ative reduction) for voice search task, indicating the reliability of
actual English words supplemented by the transliterated Indian
English data. The model holds the toWER performance on dictation.

By adding the above two transliterated data sets to the origi-
nal Bengali-English mixed data, we have achieved the best toWER
performances: it successfully reduces toWER by 2.2% relative for
voice search, and reduces toWER for dictation by 1.3% relative. The
improvements suggest complementary strengths from transliterated
“CM train” and transliterated external English corpus. This might
be particularly important, as it shows the promise of transliterating
textual training data from other languages.

We find transliterating Bengali-English data to English (denoted
as “CM2EN”), indicated by (5), leads to the degradation in perfor-
mance relative to the baseline on both voice search and dictation.
This discourages transliterating code-mixed text to the secondary
language when building an LM for the imary language.

We find it harder to reduce toWER on dictation, we speculate that
the utterance length of duration is generally longer than the length of
voice search queries, and MaxEnt LM might not be able to represent
long-span word dependencies effectively.

Table 2. toWER (%) of data augmentation experiments with MaxEnt
LMs. (Here “CM” is short for ”CM train”).

Training Data, 2nd-pass LM VS D
(1) CM (baseline), MaxEnt 18.4 15.4
(2) CM+CM2BN, MaxEnt 18.1 15.4
(3) CM+inEN2BN, MaxEnt 18.2 15.4
(4) CM+CM2BN+inEN2BN, MaxEnt 18.0 15.2
(5) CM+CM2EN, MaxEnt 18.6 15.5
(6) CM+CM2BN+CM2EN, MaxEnt 18.1 15.4

LSTM LMs: Based on the results of MaxEnt LM rescoring ex-
periments, we use the data augmentation configurations that yield
the best performances in toWER to train LSTM LMs. These results
are presented in Table 3. The LSTM LM score is interpolated with
the 5-gram LM score by a weight of 0.5. We find all the LSTM LMs
outperform the MaxEnt models that are trained on the same train-
ing data configuration: toWER has been reduced up to 4.4% relative
for voice search, and reduced up to 5.2% relative for dictation. We
are hesitant to conclude that LSTM LMs are inherently superior to
MaxEnt LMs in any data augmentation scenarios. In fact, in this sec-
tion, we describe a MaxEnt model trained with additional text from
a written domain that achieves performance very close to unadapted
LSTM LMs.

In many experiments in this paper, and reported elsewhere in the
literature, the differences between MaxEnt and LSTM performance
is relatively minor. This suggests a number of possible explanations.
First, the data-augmented MaxEnt may require additional hyperpa-
rameter tuning to achieve the same gains observed in LSTM models
by the baseline training approach. For example, when training on
augmented data, the MaxEnt model may require additional param-
eters. When we add transliterated copies of CM train, we double
the count of n-grams containing only Bengali words. This may bias
count-based models (N-gram and MaxEnt) more than LSTMs. That
said, it is also possible that the LSTM is able to model something
unique about bilingual data by being exposed to essentially parallel
texts. This may allow the LSTM to learn a code-independent in-
ternal representation aggregating distinct writing forms of the same
underlying tokens.

6.2. LM Adaptation Experimental Results

We conduct a range of adaptation experiments, as an alternative to
exploit the full potential of in-domain data, and compare them to
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Table 3. toWER (%) of data augmentation experiments with LSTM
LMs. “(1)”, “(2)”, “(4)” refer to equivalent data configurations in
Table 2.

Training Data, 2nd-pass LM VS D
(1) CM, LSTM 18.3 15.1
(2) CM+CM2BN, LSTM 17.3 14.7
(4) CM+CM2BN+inEN2BN, LSTM 17.6 14.6

the non-adapted LMs which are trained on transliteration-augmented
data.

MaxEnt LM Adaptation: We find large toWER reduction from
adapting on “CM train”. Training on the Bengali-transliterated cor-
pus which pools code-switched spoken transcripts and code-switch
written domain text (i.e. first row in Table 4) only gets 19.8% toWER
in VS, and 15.4% in dictation. Training on the same data, but adding
a fine-tuning phase to adapt MaxEnt LM on the spoken transcript
dramatically reduces toWER to 19.8% in VS (12.6% rel. reduction),
and 14.4% (6.5% rel. reduction) in dictation. This suggests a signifi-
cant difference between the written and spoken data, and, moreover,
the mismatch is amplified when rescoring hypotheses of VS, but not
that obvious for rescoring hypotheses of dictation.

LSTM LM Adaptation: We explore the potential of LSTM
LMs on a smaller set (i.e. “CM train” only). We find absolute re-
ductions of 0.1% and 0.2% in toWER by adapting LSTM LMs, com-
pared to their non-adapted LSTM peers, on both VS and dictation.
As explicit language code information is present to LSTM LMs,
richer contextual signals may be captured, leading to improvements
over their unadapted counterparts.

As shown in Table 4, we find close performance in toWER of
adapted MaxEnt LM (17.3% and 14.4%) and adapted LSTM LM
(17.2% and 14.6%), for both voice search and dictation. We note
this MaxEnt LM was pre-trained on a larger training set (“CM train
+ wCM”) before adaptation, while the LSTM LM was only adapted
on its spoken transcript portion and its Bengali-transliterated copy
(“CM2BN”), by learning the language code information. The differ-
ence in the amount of training and adaptation data might result in the
regression on the dictation task (14.4% vs. 14.6%). By introducing
a new data source, i.e. English speech transcripts which have been
transliterated into Bengali, we compensate for the loss in toWER of
dictation from 14.6% to 14.5%.

Table 4. Adaptation results with MaxEnt and LSTM LMs (prefix
“ada” refers to “adapted”), in toWER (%).

Data, 2nd-pass LM VS D
(7) (CM+wCM)2BN, MaxEnt 19.8 15.4
(7) (CM+wCM)2BN, adaMaxEnt 17.3 14.4
(1) CM, adaLSTM 18.2 15.3
(2) CM+CM2BN, adaLSTM 17.2 14.6
(4) CM+CM2BN+inEN2BN, adaLSTM 17.4 14.5

6.3. Analysis of Error types

Inspecting into the detailed error types (deletion, insertion, substitu-
tion), we find that the unadapted MaxEnt LM does well in control-
ling insertion errors, while MaxEnt adaptation provides reductions
to deletions and substitutions, while increasing the number of inser-
tions (as shown in Table 5). This is consistent with a hyperparameter

setting that has somewhat reduced ”coverage”, but increased model
fidelity in the covered regions. This error pattern is not observed in
LSTM models: we see some minor improvements to deletion errors
through adaptation with virtually no change to insertions and sub-
stitutions. This may suggest that the adaptation via a language code
enables it to effectively increase its coverage, but this does very little
to improve insertions and substitutions. Comparing across model-
ing technique, the unadapted LSTM LM introduces slightly more
deletion errors than the unadapted MaxEnt LM, however, these dif-
ferences are compensated via LSTM adaptation.

Table 5. toWER (%) of each error type for different LMs. “(4)”
stands for “CM+CM2BN+inEN2BN” data configuration, while
“(7)” stands for “(CM+wCM)2BN” data configuration.

Data, 2nd-pass LM VS (del/ins/sub) D (del/ins/sub)
(7), MaxEnt 6.7/1.3/11.8 3.2/1.5/10.6
(7), adaMaxEnt 4.7/1.9/10.7 2.6/1.8/10.0
(4), MaxEnt 3.8/2.5/11.8 1.8/2.6/10.8
(4), LSTM 4.0/2.3/11.3 1.9/2.5/10.2
(4), adaLSTM 3.7/2.3/11.3 1.8/2.5/10.1

7. CONCLUSIONS

Code-switching poses a particular set of challenges for language
modeling. There is a combinatorial explosion of valid contexts to
condition a token, and the token itself can be realized in multiple
languages.

In this paper, we present a simple yet effective transliteration-
based data augmentation approach to improving speech recognition
performance of code-switched Bengali-English. By conducting a
range of language model rescoring experiments with MaxEnt and
LSTM models, we demonstrate its effectiveness in reducing the
recognition error rate of Bengali-English speech. Transliterating the
code-mixed textual corpus to the primary language (Bengali in this
case) and adding it to training data significantly reduces the toWER,
especially for LSTM LMs. We also compare this approach to adap-
tation. We find that this simple augmentation performs equally well
as an adapted MaxEnt LM which was pre-trained on a much larger
set of code-switched data. LSTM adaptation results in modest but
consistent gains. We find that this augmentation approach is more
easily applied to LSTM than MaxEnt modeling. The interaction
between data augmentation and MaxEnt hyperparameters remains a
question for future investigation.

This work has shown clear gains in modeling Bengali-English
code-switched data. While there is nothing specific that limits the
approach to these languages, the robustness of this approach to other
language pairs (or groups of more than two languages) has not been
assessed here.
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