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ABSTRACT

The end-to-end lattice-free maximum mutual information
(LF-MMI) approach has recently been shown to be beneficial
for automatic speech recognition (ASR) in general. More
specifically, its end-to-end nature and use of context inde-
pendent phone labels make it attractive for multilingual ASR.
We show that end-to-end LF-MMI is indeed competitive on a
low-resourced multilingual task, comfortably outperforming
a connectionist temporal classification (CTC) baseline. We
further investigate the feasibility of biphone contexts, being
a candidate compromise between the context independent
approach and the triphone contexts that usually perform well.
We show that biphones do not initially perform well, but
can do so after language adaptive training, concluding that
biphones carry language variability but are promising for
multilingual ASR.

Index Terms— end-to-end LF-MMI, multilingual ASR,
CTC, language adaptive training

1. INTRODUCTION

Recently, there has been increased interest in rapidly devel-
oping high performance automatic speech recognition (ASR)
systems for a broad range of languages. Speech recogni-
tion systems built with multilingual deep neural networks
(DNNs) have been shown to provide consistent advantages
especially for low-resourced languages [1, 2, 3]. In DNN, the
hidden layers can be considered as a universal feature extrac-
tor. Therefore, the hidden layers can be trained jointly using
data from multiple languages to benefit each other [3, 4].
The target of the multilingual DNN can be either the univer-
sal International Phonetic Alphabet (IPA) based multilingual
senones [5] or a layer of separate activations for each lan-
guage [3, 6, 7].

All of these models are based on a conventional DNN-
HMM framework. In order to perform well, DNNs model
context-dependent states to mitigate the error associated with
the Markov assumption. However, this creates more chal-
lenges for multilingual and cross-lingual ASR because of
the large increase in context dependent labels arising from
the phone set mismatch. Recently, end-to-end approaches
for automatic speech recognition have received a lot of at-

tention. Popular end-to-end approaches are Connectionist
Temporal Classification (CTC) [8], RNN-Transducers [9]
and attention-based methods [10]. More recently, end-to-
end lattice-free maximum mutual information (LF-MMI) has
been proposed [11]. These methods typically aim to train a
neural network-based acoustic model in one stage without
relying on prerequisite models, alignments or decision trees.
Multilingual ASR and cross-lingual adaptation can benefit
more from these properties: language-specific prerequisite
systems are no longer required; cross-lingual adaptation from
an IPA-based system can be done simply by extending the
output layer to new phonemes in a target language [12]. CTC
training has been shown to be a promising alternative to the
traditional DNN-HMM system for both multilingual ASR
and cross-lingual adaptation [12, 13].

CTC-based models, however, are sensitive to the amount
of training data. Recently, it was shown that the end-to-end
LF-MMI training can achieve comparable or better perfor-
mance than other end-to-end approaches, including CTC, on
well-known large vocabulary tasks. Therefore, it is natural
to investigate the performance of the end-to-end LF-MMI in
low-resourced scenarios. Although several prior works have
applied regular LF-MMI (not the end-to-end version) in mul-
tilingual training [14, 15], most of them used the multilingual
network as a seed model for further transfer learning. To the
best of our knowledge, this is the first work investigating end-
to-end LF-MMI for multilingual ASR.

To this end, we first discuss and compare CTC and end-
to-end LF-MMI in Section 2, as CTC was a pioneering
approach in end-to-end speech recognition and was shown
to be a promising alternative for cross-lingual adaptation.
Then, the IPA-based universal multilingual training approach
is described in Section 3. We investigate biphone modelling,
finding that it is sensitive to variability across languages, and
hence requires some language adaptation in order to work.
Therefore, language adaptive training (LAT) is introduced
and investigated in the context of end-to-end LF-MMI train-
ing. Moreover, a pruned biphone tree is also proposed to
remove the redundant cross-lingual combinations in Sec-
tion 3. Experimental results and analysis are provided in
Section 4. Finally, Section 5 concludes the paper.
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2. END-TO-END MODELS

2.1. Connectionist Temporal Classification

The Connectionist Temporal Classification (CTC) approach
uses an objective function for sequence labelling problems
without requiring any frame-level alignment between the
input and target labels. For an input sequence X(u) =

(x
(u)
1 , . . . ,x

(u)
Tu

), the conditional probability P (w(u)|X(u), θ)
is obtained by summing over the probabilities of all the paths
that correspond to the target label sequence w(u) after insert-
ing the repetitions of labels and the blank tokens, i.e.,

FCTC =

U∑
u=1

log p(w(u)|x(u), θ) (1)

=

U∑
u=1

log
∑

s∈Ω(w(u))

Tu∏
t=1

p(st|x(u)
t , θ) (2)

where Ω(w(u)) denotes the set of all possible paths that
correspond to w(u) after repetitions of labels and insertions
of the blank token and θ represents the model parameters.
The conditional probability of the labels at each time step,
P (st|xt, θ), is estimated using a neural network. More details
can be found in [8].

As formulated by [16], CTC can be identified as a special
case of the generalized hybrid HMM/NN training procedure
using the full-sum over the hidden state sequence. The gen-
eralized HMM training optimizes the likelihood of observing
x(u) given a target sequence w(u) with state sequences s as
hidden variable and model parameters θ, given by:

FML =

U∑
u=1

log p(x(u)|Mw(u) , θ) (3)

=

U∑
u=1

log
∑

s∈M
w(u)

Tu∏
t=1

p(st+1|st)p(x(u)
t |st, θ)(4)

where the composite HMM graph Mw(u) represents all the
possible state sequences s pertaining to the transcription
w(u). In HMM/NN models, p(xt|st, θ) is modeled as

p(xt|st, θ) ∼
p(st|xt, θ)

p(st)
(5)

In this context, CTC can be considered as a special reduced
HMM topology which has no transition probabilities, no state
prior probability model but a special blank state and is trained
with Baum-Welch soft alignments.

2.2. End-to-end LF-MMI

Maximum mutual information (MMI) is a discriminative ob-
jective function which aims to maximize the probability of

the reference transcription, while minimizing the probability
of all other transcriptions:

FMMI =

U∑
u=1

log
p(x(u)|Mw(u) , θ)

p(x(u))
(6)

=

U∑
u=1

log
p(x(u)|Mw(u) , θ)∑
w p(x

(u)|Mw, θ)
(7)

In the regular LF-MMI proposed in [17], the composite HMM
was not used as the numerator graph and instead a special
acyclic graph was used which could exploit the alignment in-
formation from a previous HMM-GMM model. By contrast,
in the end-to-end LF-MMI proposed in [11], the composite
HMM (with self-loops) was used as the numerator graph. As
a result, unlike regular LF-MMI, there is no prior alignment
information in the numerator graph and there is no restriction
on the self-loops so there is much more freedom for the neural
network to learn the alignments. Comparing (1), (3) and (6),
we can consider the end-to-end LF-MMI as a discriminative
version of CTC training.

3. MULTILINGUAL PHONEME-BASED MODEL

3.1. Universal Phone Set

More recently, building end-to-end multilingual speech recog-
nition systems using a universal grapheme set has been inves-
tigated [18, 19]. However, modelling graphemes includes im-
plicit modelling of spelling, which requires a large amount of
data. Moreover, graphemes can differ a lot from language to
language. Languages that have nothing in common in terms
of graphemes also share some common phonemes. More-
over, a universal phoneme-based model is easily extensible to
unseen phonemes when adapted to a new language [12].

With this motivation, and following our previous work[12,
13], we propose a multilingual architecture that uses a univer-
sal output label set consisting of the union of all phonemes
from the multiple languages. This universal phone set can
be either derived in a data-driven way, or obtained from the
International Phonetic Alphabet (IPA). In this study, we cre-
ated a universal phone set by merging the monolingual phones
which share the same symbol in the IPA table.

For multilingual end-to-end LF-MMI training, we trained
a multilingual phoneme language model for denominator
graph using the training transcriptions from all the multilin-
gual data. The composite HMM graphs were created using
the language-specific lexicons, and were used as the numer-
ator graphs. In this sense, the numerator graph is language-
specific while the denominator graph is multilingual.

3.2. Biphone Modelling and Pruned Biphone Tree

Although monophone-based end-to-end training fits well for
multilingual ASR because of its simplicity, it is well known
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that context-dependent modelling further improves the per-
formance. In this sense, using full biphones can be a good
compromise. It has been shown that context-dependent mod-
elling also helps in end-to-end LF-MMI training [11]. This
was implemented as a trivial full biphone tree. This tree is
not pruned at all and does not have any tying, so there is no
need for alignments and the approach does not require any
previously trained models. However the size of the biphone
targets grows quadratically in a multilingual set-up. A lot
of cross-lingual biphone combinations will be created which
never occur in the training data, impacting the training effi-
ciency. Therefore, we propose to build a pruned biphone tree
where all the cross-lingual biphone combinations are pruned
away. More specifically, suppose a language has a phone set
of {a, b, c} and another language has a phone set of {b, c, d}.
The universal phone set would be {a, b, c, d}. When creat-
ing the biphone targets, combinations such a− d and d− a
will also be generated. However, they will never appear in the
training data and are pruned away in this work.

3.3. Language Adaptive Training

It has been demonstrated that the layers close to the output
layer are more language-related and training the last layer in
a language-dependent manner can help the IPA-based multi-
lingual system to better capture the language specificity [20].
More specifically, the output of the neural network for lan-
guage s, osL, is calculated as

osL = softmax(WsLoL−1 + bsL) (8)

where L is the output layer, WsL and bsL are the language-
specific output weight and bias for language s. This archi-
tecture is similar to the multi-task multilingual training where
the output layer consists of separate activations for each lan-
guage, but it models the shared universal phone set. This ap-
proach will be investigated in end-to-end LF-MMI training in
order to mitigate the side-effect from context dependent mod-
elling and improve the multilingual models.

4. EXPERIMENTS

4.1. GlobalPhone Database

Experiments are reported on GlobalPhone [21]. We used the
French (FR), German (GE), Portuguese (PO), Russian (RU)
and Spanish (SP) datasets from the GlobalPhone corpus.
Each language has roughly 20 hours of speech for training
and two hours for development and evaluation sets, from a
total of about 100 speakers. The development sets were used
to tune the hyper-parameters for training. Only the results on
evaluation sets are reported. The trigram language models
that we used are publicly available1. The detailed statistics
for each of the languages is shown in Table 1.

1http://www.csl.uni-bremen.de/GlobalPhone/

Table 1. Statistics of the subset of GlobalPhone languages
used in this work: the amounts of speech data for training and
evaluation sets are in hours.

Language Vocab PPL #Phones Train Dev Eval

FR 65k 324 38 22.7 2.1 2.0
GE 38k 672 41 14.9 2.0 1.5
PO 62k 58 45 22.7 1.6 1.8
RU 293k 1310 48 21.1 2.7 2.4
SP 19k 154 40 17.6 2.0 1.7

4.2. Setup

We used 40-dimensional MFCC as acoustic features, derived
from 25 ms frames with a 10 ms frame shift. The features
were normalized via mean subtraction and variance normal-
ization on a speaker basis. We used a frame subsampling
factor of 3 which speeds up training by a factor of 2. We
also augmented the data with 2-fold speed perturbation in
all the experiments unless otherwise stated. All the mono-
lingual phones were mapped to IPA symbols and we merged
the phonemes from FR, GE, PO, RU and SP to create the uni-
versal phone set for multilingual training.

The multilingual CTC model has 4 layers of Bidirectional
Long Short-Term Memory (BLSTM), with 320 cells in each
layer and direction. All the weights in the models were ran-
domly initialized and were trained using stochastic gradient
descent with momentum. A learning rate of 0.00004 was used
and early stopping on the validation set was applied to select
the best model. Dropout was applied as first proposed in [22].
The dropout rate was set to 0.2. For end-to-end LF-MMI
training, 8 layers of Time Delay Neural Network (TDNN)
was used, with 450 nodes in each layer. The network param-
eters are initialized randomly to have zero mean and a small
variance. All CTC models were trained based on the EESEN
implementation [23] and end-to-end LF-MMI systems were
built using the Kaldi [24].

4.3. Results

4.3.1. Comparison Between CTC and End-to-end LF-MMI

Previous research has shown that the end-to-end LF-MMI
training outperforms the CTC-based model on a fairly big
dataset (Switchboard which has roughly 300 hours data).
In this section, these two approaches are compared using
much less data. Only monolingual data was used to train
each model. Both monophone modelling and full biphone
modelling were investigated.

Results are shown in Table2; it is clear that the end-to-end
LF-MMI training significantly outperforms CTC training in
low-resourced scenarios. It implies that LF-MMI training is
less sensitive to the amount of training data. In addition, bi-
phone modelling improves the performance in all the mono-
lingual modeling cases.
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Table 2. Comparison between CTC training and end-to-end
LF-MMI for monolingual low-resourced ASR in WER(%).

system FR GE PO RU SP
monophn CTC 26.9 24.3 21.0 32.7 11.7

biphn CTC 26.1 24.1 20.8 32.0 10.9
monophn LF-MMI 23.6 18.7 18.6 26.6 9.3

biphn LF-MMI 23.5 17.0 18.2 25.8 8.5

4.3.2. Multilingual Training

Multilingual training has been proved to be effective in tra-
ditional DNN-HMM training and CTC training. We further
investigated multilingual training in the end-to-end LF-MMI
framework. For multilingual biphone modelling, the pruned
biphone targets were used as described in Section 3.2. The
number of biphone targets was reduced from 23980 to 13776.
The models were trained using data from all the 5 languages.

Table 3. Comparison between multilingual CTC training
and end-to-end LF-MMI in WER(%).

system FR GE PO RU SP
ML monophn CTC 24.9 23.6 19.6 31.6 10.7

ML monophn LF-MMI 23.2 15.4 17.0 24.9 7.9
ML biphn LF-MMI 23.2 16.0 17.9 25.1 7.7

Comparing Table 3 and Table 2, multilingual training
yields significant improvement over monolingual training for
both monophone and biphone-based LF-MMI. They both
significantly outperform multilingual CTC training. How-
ever, different from the monolingual cases, the multilingual
biphone LF-MMI performs worse than multilingual mono-
phone model in most of the tested languages. We hypothesize
that biphone targets cover more variabilities compared to the
corresponding monophone, especially when they are shared
by mutiliple languages. As reported in [20], language-specific
characteristics cannot be well modeled by an IPA-based uni-
versal network. Language adaptive training (LAT) could be a
solution to better model these variabilities across languages.

4.3.3. Language Adaptive Training

In order to test our hypothesis, language adaptive training
was applied in both monophone and biphone based end-to-
end LF-MMI training. The last two layers were trained to be
language-specific. From Table 4, we can find that language
adaptive training improves the performance for both cases and
the biphone model benefits more from it. LAT helps further
exploit the advantages of context-dependent modelling.

We further analyze the phoneme error rate with respect to
the phonemes shared by multiple languages and the unique
phonemes that only appear in one language. The reference
phoneme sequences were extracted from the alignment and
the hypotheses were generated from the best path of the de-
coding lattice. The analysis was conducted on the develop-

Table 4. Comparison of multilingual end-to-end LF-MMI
w/o LAT in WER(%).

system FR GE PO RU SP
ML monophn LF-MMI 23.2 15.4 17.0 24.9 7.9

+LAT 23.0 15.2 16.7 24.6 7.5
ML biphn LF-MMI 23.2 16.0 17.9 25.1 7.7

+LAT 22.7 14.8 16.6 24.1 7.3
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Fig. 1. PERs (%) comparison with or without Language
Adaptive Training.

ment sets of the 5 languages using monophone and biphone
based models, as shown in Figure 1.

It is clear that biphone-based multilingual model indeed
performs slightly worse than monophone-based model on the
shared phones. However, it benefits more from the language
adaptive training. Meanwhile, none of the models show much
difference on the unique phonemes. This explains the above
observations.

5. CONCLUSION

It was demonstrated that a universal phoneme-based multi-
lingual TDNN trained with an end-to-end LF-MMI objec-
tive outperforms CTC training by a significant margin when
training data is limited. Directly modelling biphones does
not give any improvement over monophone modelling in
multilingual training because of the increasing variations in
context-dependent modelling. Language adaptive training
can help break this bottleneck. The phoneme-based end-
to-end LF-MMI training can be a better candidate also for
cross-lingual adaptation, since the output layer can be easily
extended to new phonemes as in CTC-based models. We
leave this work as our future research.
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