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ABSTRACT

The traditional method of pretraining neural acoustic models
in low-resource languages consists of initializing the acous-
tic model parameters with a large, annotated multilingual
corpus and can be a drain on time and resources. In an
attempt to reuse TDNN-LSTMs already pre-trained using
multilingual training, we have applied Teacher-Student (TS)
learning as a method of pretraining to transfer knowledge
from a multilingual TDNN-LSTM to a TDNN. The pretrain-
ing time is reduced by an order of magnitude with the use
of language-specific data during the teacher-student train-
ing. Additionally, the TS architecture allows us to leverage
untranscribed data, previously untouched during supervised
training. The best student TDNN achieves a WER within 1%
of the teacher TDNN-LSTM performance and shows consis-
tent improvement in recognition over TDNNs trained using
the traditional pipeline over all the evaluation languages.
Switching to TDNN from TDNN-LSTM also allows sub-real
time decoding.

Index Terms— Teacher-student learning, Low-resource
speech, Multilingual training, Automatic speech recognition

1. INTRODUCTION

State-of-the-art speech recognition systems have achieved
human-level performance—depending on the domain and
measure of human performance—in the last couple years
because of neural network-based acoustic models trained on
huge amounts of annotated speech [1]. However, acquiring
such annotations are expensive and thus, similar progress
on low-resource settings is difficult to achieve. People have
resorted to multilingual or cross-lingual training which trans-
fers knowledge from a well-trained model to scenarios where
transcriptions are limited [2, 3, 4, 5]. Multilingual training
has been extremely popular in low-resource speech recog-
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nition settings, especially after the emergence of neural net-
works in speech recognition [6]. BBN has observed a gain
in ASR performance by training neural network models on a
1560-hour multilingual training corpus and then fine-tuning
this network with the target language after swapping out the
output layer to monolingual mode [7, 8]. Given the large
amount of multilingual data, sophisticated neural network
models (like recurrent neural networks) can be used during
multilingual training. However, during the fine-tuning stage,
the limited amount of data in the target language can lead to
an optimization problem. Attempts have been made to only
update a reduced number of parameters during finetuning,
but updating the entire network with a reduced learning rate
or fewer epochs typically performs better [9]. While the
gains from multilingual pretraining are often impressive, the
pretraining stage takes significant time and computational
resources. Given the cost of the pretraining, it is expensive
to explore alternative architectures. Performance using small
monolingual corpora do not necessarily correlate with using
the model in a multilingual setting.

In this work, we use teacher-student learning to trans-
fer knowledge from recurrent neural networks (pretrained on
multilingual data and fine-tuned on monolingual data) to non-
recurrent time-delay neural network (TDNN) models. We
speed up the pretraining process by using only monolingual
training data and record lower word error rates (WERs) com-
pared to TDNNs trained using both the monolingual as well
as multilingual pipeline. Since annotations are not a necessity
for TS training, we have also leveraged untranscribed data to
achieve a further gain in ASR performance in the target lan-
guages. Instead of the popular Knowledge Distillation ap-
proach, which uses cross entropy loss over the senone distri-
bution, we use L2-loss to match the performance of a hidden
layer activation.

The work presented here has surface similarities with [5]
in that they have also used teacher-student learning for multi-
lingual training to help in the low-resource setting. However,
they have used the entire multilingual dataset to train their stu-
dent networks. They have also used cross entropy on softmax
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outputs to compute their loss function, which is the widely-
used approach for speech.

2. MULTILINGUAL SYSTEMS

2.1. Chain TDNN and Chain TDNN-LSTM

Our acoustic models use the “chain model” topology [10]
and three frame subsampling of the input features. We use
both the TDNN and TDNN-LSTM architectures. While the
TDNN-LSTM acoustic model provides a significant reduc-
tion in WER, it does come with increased computational cost,
both during training and decoding.

2.2. Multilingual training and knowledge transfer

The multilingual training and fine-tuning pipeline is similar
to [7] with some minor revisions. The standard criterion used
during multilingual training is LF-MMI with an output layer
that is simply a combination of all phone states for all lan-
guages. Note that each phone is tagged with a language ID,
so the acoustic states are not shared across languages. To tune
the multilingual network to the target low resource language,
the multilingual output layer is discarded and a new output
layer for the target language is created. The entire network is
then fine-tuned using the LF-MMI criterion. The data used in
this stage is the transcribed data for the target language. Fol-
lowing this, the model parameters are further sharpened with
sMBR training; 1 epoch for TDNN-LSTM and 4 epochs for
TDNNs.

3. TEACHER-STUDENT TRAINING

Teacher-student (TS) training is a technique to train a low-
complexity student model from a more cumbersome, high-
complexity teacher model. For DNN-HMM based speech
recognition models, most literature has performed TS train-
ing using a KL-divergence based loss between the softmax
distributions of the teacher and student models [11]. Hinton
et.al [12] introduced the temperature parameter to sharpen
(or flatten) the softmax distribution and uses TS training as
an auxillary function for regularization of supervised train-
ing. Generalized distillation (GD) [13, 14, 15] extends dis-
tillation methods by training a teacher network with separate
clean data. A student network is trained on noisy data and, at
the same time, guided by the soft-labels from a teacher which
has access to synchronized clean speech. The generalized dis-
tillation methods showed improved performance on CHiME4
and Aurora2 corpora. A variant of teacher-student learning
has also been used in speech enhancement for noise-robust
speech recognition [16, 17].

However, the TDNN and TDNN-LSTM models we use as
teacher models do not use a softmax output. The final output
layer is treated as a pseudo log-likelihood instead. Hence, we
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Fig. 1. This diagram depicts our teacher-student pretraining
process from a teacher TDNN-LSTM to student TDNN. (1)
Monolingual speech data is passed to both the teacher and
student. The L2 − Loss is calculated according to Eqn 1.
(2) The parameters of the student model are updated based
on the loss LTS. The gray color portrays the update of the
student TDNN parameters using the L2-loss all the way down
the student TDNN.

opt for the TS training method used in [18] for model com-
pression. At first, a bottleneck layer of dimensionality D is
chosen in both the teacher and the student. A forward pass
of the input x(m,u) through both the teacher and the student
obtains activations f() and g() respectively. An L2-based dis-
tance loss between the two activations is then calculated and
the student model parameters are updated based on this loss.

LTS(x(m,u)) =
1

D

D∑
d=1

(g(x(m,u))− f(x(m,u)))2 (1)

where x(m,u) refers to frame m of utterance u. We believe
this approach offers several advantages. Since the softmax
distribution is not used, this approach is more flexible and can
be applied to more types of networks. More importantly, it is
not hindered by the over confidence of the teacher model. In
our previous experience, better, more confident teacher mod-
els can actually produce worse students. It should also be
noted that we have only used language-specific data during
the teacher-student training phase as opposed to multilingual
data which significantly reduces the time taken for pretrain-
ing. A pictorial representation of the TS pretraining pipeline
is shown in Fig 1.

4. EXPERIMENTS

The languages used to test our framework are Dari (20-
hours of transcribed speech), Swahili (40 hours of transcribed
speech) and Tagalog (80 hours of transcribed speech). We
test our pipeline and tune parameters on Dari and apply the
tuned architectures on Swahili and Tagalog.
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4.1. Multilingual experiment specifications

The multilingual models are trained using 1560-hour Conver-
sational Telephonic Speech (CTS) taken from a set of 11 dif-
ferent languages1. The training corpus used in this work is
the same as the one used in [8] and [7]. It was trained with
the BBN Sage toolkit [19], specifically using the integrated
Kaldi [20] portion of the toolkit. The input features used were
40 dimensional high-resolution MFCC features for the input
frame and the frames surrounding it, and 100-dimension i-
vectors, for a total input feature vector of size 220. The struc-
ture of the model is the standard chain model as described
in [10], and the data is subsampled to examine 1 out of every
3 frames. The TDNN architecture consists of 7 hidden layers
with 576 neurons in each layer. The splicing configuration for
the TDNN is as follows: {0}, {-1,0,1},{-1,0,1},{-1,0,1},{-
3,0,3},{-3,0,3},{-3,0,3},{-3,0,3}, {0}. This can be read as
each layer containing the splicing of the layers at a time rel-
ative to 0, with 0 being the current frame. So the first hidden
layer uses solely the concatenated input feature vector, the
second hidden layer uses a concatenation of the hidden layer
outputs at the previous time-step, the current time-step, and
the next time-step, and so on.The TDNN-LSTM has an ar-
chitecture of tdnn-lstm-tdnn-lstm-tdnn-lstm (three alternating
layers of TDNN and LSTM), where the splicing configura-
tions of the TDNN layers is {-3,0,3}. There are 1024 neurons
in the TDNN layer and 256 neurons in the LSTM layer.

Multilingual training was performed on the TDNN and
TDNN-LSTM models using the LF-MMI objective function,
with an initial learning rate of 1 × 10−3, which gradually
went down to 1× 10−4. The output layer consists of ∼16000
phone targets from all the member languages in the multilin-
gual dataset.

After multilingual training, the TDNN and TDNN-LSTM
models are fine-tuned for a single epoch using LF-MMI with
an initial learning rate of 3×10−3, which gradually goes down
to 3×10−4. We also perform sMBR (1-4 epochs based on the
model) after LF-MMI. The learning rate of sMBR training is
fixed at 5 × 10−6. In Table 1, we list the Word Error Rates
(WER) of models trained using multilingual training and fine-
tuning on Dari, Swahili and Tagalog. Although Swahili and
Tagalog corpora are both included in the multilingual training
corpus, membership in the multilingual corpus does not seem
to affect knowledge transfer optimization [7].

We compare models trained using multilingual training
with models trained monolingually where only the target-
language data is passed through randomly initialized neural
networks with the same architecture as above. Parameters are
updated first using LF-MMI and then sMBR using the same
recipe as above. From the table, it can be concluded that there
is a universal improvement in word recognition performance

1The languages and amounts of data for the multilingual corpus are
as follows: English (380hrs), Mandarin (250hrs), Spanish (245hrs), Can-
tonese (110hrs), Pashto (98hrs), Tagalog (90hrs), Vietnamese (90hrs), French
(85hrs), Turkish (83hrs), Haitian (80hrs), Swahili (50hrs).

Language Baseline Experiment WER

Dari

Mono TDNN 49.1
Multi TDNN 45.5
Multi TDNN-LSTM 43.1

Swahili

Mono TDNN 53.5
Multi TDNN 50.3
Multi TDNN-LSTM 45.5

Tagalog

Mono TDNN 54.9
Multi TDNN 51.8
Multi TDNN-LSTM 47.6

Table 1. Monolingual and multilingual baseline Word Error
Rates (WER) for Dari, Swahili and Tagalog.

for models trained multilingually compared to monolingual
models.

4.2. Teacher-student experiments

Our main focus is to use TDNNs without recurrent connec-
tions to emulate the performance of TDNN-LSTMs. We
use the TDNN-LSTM obtained after the fine-tuning step of
multilingual training as teacher. Owing to the small size of
Dari, we test the correctness of the teacher-student pipeline
and finalize the student TDNN architecture on this language.
We investigate student TDNNs with different configurations
and compare performance to the teacher TDNN-LSTM. The
results are listed in Table 2. It should be observed that when
a student TDNN is trained using a teacher TDNN, the recog-
nition performance of the student TDNN is similar to the
teacher. We see no difference in performance by increas-
ing the number of hidden layers or widening the layers.
However, the situation changes when the teacher is a TDNN-
LSTM. The recognition performance of a student TDNN
improves with the inclusion of more hidden layers with a
large number of neurons per layer. The improvement in stu-
dent TDNN performance may be attributed to the fact that
increasing the number of hidden layers in a TDNN also in-
creases the length of context observed by the model. The best
performing student TDNN has 12 layers and 1280 neurons in
each layer. This increases the context from 30 frames in the
baseline TDNN to 54 frames. With this model, we achieve
WERs within 1% of the TDNN-LSTM teacher in Dari. Even
though this student TDNN has more parameters than the
teacher TDNN-LSTM, the decoding time is still faster than
the teacher due to the absence of recurrent connections.

After tuning our models on Dari, we tested whether our
observations held on Swahili and Tagalog. Hence, we chose
one student architecture with 7 hidden layers and 576 neurons
and pitted it against the best performing student model in Dari
(12 hiden layers and 1280 neurons). The results are listed in
Table 3. We see that a larger context is a positive influence
across all languages. The best performing student TDNN out-
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Teacher Student WER

Multi TDNN (7, 576) 45.3
(9, 1280) 45.4

Multi TDNN-LSTM

(7, 576) 45.9
(7, 1024) 45.1
(7, 1280) 45.1
(9, 1280) 44.3
(12, 1280) 43.9

Table 2. Word Error Rates (WER) for teacher-student pre-
training in Dari with TDNN and TDNN-LSTM teachers. The
students are TDNNs represented as (number of layers, num-
ber of neurons in each layer)

Language Teacher Student WER

Swahili
TDNN (7, 576) 50.6

(12, 1280) 50.1

TDNN-LSTM (7, 576) 50.5
(12, 1280) 47.9

Tagalog
TDNN (7, 576) 52.7

(12, 1280) 51.4

TDNN-LSTM (7, 576) 52.7
(12, 1280) 50.4

Table 3. Word Error Rates (WER) for teacher-student pre-
training in Swahili and Tagalog with TDNN and TDNN-LSTM
teachers. The students are TDNNs represented as (number of
layers, number of neurons in each layer)

performs a multilingual TDNN by 1.6%, 2.4% and 1.4% and
a monolingual TDNN by 5.5%,5.6% and 4.5% absolute (refer
to Table 1) for Dari, Swahili and Tagalog respectively.

4.3. Leveraging untranscribed data

The TDNN student WER for Dari was within 1% of the WER
of the TDNN-LSTM teacher. However, in Table 3, we find
that is not the case for Swahili and Tagalog. We suspect this
is due to poor generalization on the part of the student TDNN
models. The transcribed training data of Swahili and Taga-
log is made up of conversational telephone speech (CTS).
However, the evaluation is done over a mixture of CTS, news
broadcast (NB) and topical broadcast (TB), i.e. part of the
evaluation is from an unseen domain. Our suspicions are
confirmed in Table 4 where we look at the WER breakdown
for CTS, NB and TB respectively. The student model perfor-
mance seems to have degraded over broadcast data.

The easiest fix would be to incorporate broadcast data to
the training pipeline. Even though Swahili and Tagalog has
70 and 80 hours of broadcast data respectively, the data is not
transcribed. The typical approach to leveraging untranscribed
data in acoustic model training is to decode the data and treat

Language Model All CTS NB TB

Swahili Before 47.9 34.4 48.5 53.2
After 46.6 34.3 46.6 51.6
TDNN-LSTM 45.5 32.8 45.3 50.8

Tagalog Before 50.4 37.3 49.5 52.1
After 48.8 37.5 47.5 50.4
TDNN-LSTM 47.6 37.0 46.2 49.2

Table 4. Swahili and Tagalog teacher-student trained TDNN
WERs before and after leveraging untranscribed data, com-
pared with multilingual TDNN-LSTM model.

the hypothesized transcripts as truth. However, with teacher-
student learning, it is simple to combine the unlabelled data
with the transcribed data and pass it through the teacher be-
cause labels are not required to train the student TDNNs dur-
ing TS training.

After using the combination of transcribed and untran-
scribed data in the teacher-student learning stage, we find that
the performance of student TDNNs improve. The results are
in Table 4. It can be observed that even though the recogni-
tion performance remains almost same for CTS, performance
on NB improves by 1.9% and 2% absolute and performance
on TB improves by 1.6% and 1.7% absolute for Swahili and
Tagalog respectively.

5. CONCLUSION

In this work, we replace the traditional multilingual train-
ing phase for low-resource speech recognition with teacher-
student training. The proposed training mechanism facilitates
knowledge transfer from a TDNN-LSTM, trained and fine-
tuned using multilingual training to a TDNN. The student
TDNN models perform better than TDNNs trained using su-
pervised training approaches (multilingual and monolingual
training). The improvement is consistent across all the three
languages we evaluate on, namely, Dari, Swahili and Taga-
log. Traditionally, multilingual training is a drain on time
and resources due to the bulkiness of the corpus. We re-
duce training time by using monolingual data during teacher-
student training. The best student TDNN architecture has 12
hidden layers and 1280 neurons in each layer and achieves
a WER within 1% of TDNN-LSTM performance for all test
languages. Since increase in number of TDNN layers means
subsequent increase in context, we understand that context
plays an important role in improving the performance of stu-
dent TDNNs. Further, teacher-student pretraining enables us
to leverage large amounts of unlabelled data in a fairly easy
way, enhancing the performance of the student TDNNs. It
is also worth mentioning that in terms of decoding time, the
best performing student TDNN model is still faster than the
TDNN-LSTM due to the absence of recurrent connections.
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