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ABSTRACT

End-to-end speaker embedding systems have shown promising
performance on speaker verification tasks. Traditional end-to-end
systems typically adopt softmax loss as training criterion, which
is not strong enough for training discriminative models. In this
paper, we adapt the additive margin softmax (AM-Softmax) loss,
which is originally proposed for face verification, to speaker em-
bedding systems. Furthermore, we propose a novel ensemble loss,
called ensemble additive margin softmax (EAM-Softmax) loss,
for speaker embedding by integrating Hilbert-Schmidt indepen-
dence criterion (HSIC) into the speaker embedding system with the
AM-Softmax loss. Experiments on a large-scale dataset VoxCeleb
show that AM-Softmax loss is better than traditional loss functions,
and approaches using EAM-Softmax loss can outperform existing
speaker verification methods to achieve state-of-the-art performance.

Index Terms— Speaker verification, additive margin softmax,
ensemble, Hilbert-Schmidt independence criterion

1. INTRODUCTION

Recently, demands for high-precision speaker verification (SV) tech-
nology increase quickly in security domain, because SV has great
potential with a low requirement for collecting devices and oper-
ating environment. The task of SV systems is to verify whether a
given utterance matches a specific speaker, whose characteristic can
be extracted from enrollment utterances recorded in advance. The
characteristic of an utterance is typically represented as an embed-
ding vector, which is calculated by speaker embedding systems.

For the last decade, approaches based on i-vectors [1], which
represent speaker and channel variability in a low dimensional
space called total variability space, have dominated the field of
speaker embedding. Nevertheless, there is a paradigm shift in
recent speaker embedding studies, from i-vector to deep neural
networks (DNN) [2, 3, 4], mostly with end-to-end training. The
difference between i-vector and end-to-end systems is that i-vector
adopts generative models for embedding but end-to-end systems
adopt DNN for embedding. In end-to-end systems, we generally
use an intermediate layer of neural networks as the embedding layer
instead of the last layer or ‘classification’ layer, because the interme-
diate layer appears to be more robust in open-set tasks. To complete
speaker verification, the speaker embeddings, either learned by
end-to-end embedding systems or by i-vector, can be followed by
back-ends like probabilistic linear discriminant analysis (PLDA) [5].
In addition, cosine similarity based back-end can also be used for
speaker verification, which is much simpler than PLDA. Although
i-vector based systems are still effective if the utterances have suf-
ficient length [1], end-to-end systems appear to outperform i-vector

based methods for short utterances which are more common in real
applications.

In end-to-end systems, an appropriate training criterion (loss
function) is important for exploiting the power of neural networks.
Most traditional systems adopt a softmax loss function to supervise
the training of the neural networks. However, in speaker verification
tasks, the embeddings learned by the softmax loss based systems
cannot achieve satisfactory performance on minimizing intra-class
divergence [6, 7].

To improve the performance of end-to-end systems, researchers
have recently proposed several new loss functions for SV which can
be divided into two major categories. The first category is classi-
fication loss, such as center loss and angular softmax (A-Softmax)
loss [6, 7]. Center loss [6], which tries to reduce the intra-class dis-
tance, is typically used in a combination with softmax loss to train
an embedding system. A-Softmax loss [7] tries to incorporate the
angular margin into the softmax loss function, which has achieved
promising performance. However, the margin in A-Softmax loss is
constrained by a positive integer, which is not flexible enough.

The second category is metric learning loss, in which triplet
loss [8] and pairwise loss [9, 10] are widely used ones. Triplet loss
is defined on a set of triplets, each of which consists of an anchor
sample, a positive sample and a negative sample. Triplet loss based
systems try to maximize the distance between anchor sample and
negative sample as well as minimize the distance between anchor
sample and positive sample at the same time. Pairwise loss, such as
contrastive loss [9, 10], is defined on a set of pairs. Pairwise loss
tries to maximize the distance between two samples if they have dif-
ferent class labels, otherwise minimize it. For models supervised by
metric learning loss, the target of training and the requirement of in-
ference are consistent, which should have promising performance as
long as the training is sufficient. Nevertheless, metric learning loss
based systems have a shortcoming that the size of dataset and the
strategies for sampling and composing triplets or pairs significantly
affect the performance, bringing obstacle to training. Thus, they are
usually used in combination with classification loss.

Very recently, a novel loss function, called additive margin
softmax (AM-Softmax) loss [11], is proposed for face verifica-
tion. AM-Softmax loss has achieved better performance than other
loss functions in face verification. In this paper, we adapt the
AM-Softmax loss to speaker embedding systems. Furthermore, we
propose a novel ensemble loss, called ensemble additive margin soft-
max (EAM-Softmax) loss, for SV by integrating Hilbert-Schmidt
independence criterion (HSIC) [12] into the speaker embedding
system with the AM-Softmax loss. Experiments on a large-scale
dataset VoxCeleb show that AM-Softmax loss is better than tra-
ditional loss functions, and approaches using EAM-Softmax loss
can outperform existing speaker verification methods to achieve
state-of-the-art performance.
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2. PRELIMINARIES

In this section, we introduce some loss functions which have been
used in SV tasks, including softmax loss, A-Softmax loss and con-
trastive loss.

2.1. Softmax Loss

The softmax loss is defined as follows:

LS =
1

N

N∑
i=1

− log
e
wT

yi
xi+byi∑c

j=1 e
wT

j xi+bj
, (1)

where c is the number of classes, xi is the input of the last fully
connected layer corresponding to sample i, yi ∈ {1, 2, . . . , c} is the
class label of sample i, N is the number of samples, wj and bj are
respectively the weight vector and bias of the last fully connected
layer corresponding to class j.

2.2. A-Softmax Loss

Note that wTx in softmax loss can be rewritten as ‖w‖‖x‖ cos(θ),
where θ is the angle between w and x. Hence, the softmax loss can
be rewritten as follows:

LS =
1

N

N∑
i=1

− log
e‖wyi

‖‖xi‖ cos(θyi,i)+byi∑c
j=1 e

‖wj‖‖xi‖ cos(θj,i)+bj
, (2)

where θj,i denotes the angle between wj and xi.
By normalizing weight w, zeroing bias b and replacing cosine

with a tighter function ψ(θ) < cos(θ) for the intra-class part, the
formulation of a generalized margin softmax loss is given by:

LMS =
1

N

N∑
i=1

− log
e‖xi‖ψ(θyi,i)

e‖xi‖ψ(θyi,i) +
∑c
j=1;j 6=yi e

‖xi‖ cos(θj,i)
.

A-Softmax loss [13] adopts ψ(θ) = cos(mθ), where m is the
hyperparameter related to the margin. This makes sense in intu-
ition but mθ should not be larger than π to preserve monotonicity.
To avoid this problem, A-Softmax uses the following monotone de-
creasing function:

ψ(θ) = (−1)k cos(mθ)− 2k, (3)

where θ ∈ [ kπ
m
, (k+1)π

m
] and k ∈ {0, . . . ,m − 1}. Usually, m is a

positive integer in this function, and hence the margin in A-Softmax
loss is not flexible enough.

2.3. Contrastive Loss

Contrastive loss [14, 15] is a kind of pairwise loss in which the sam-
ples are organized into pairs with a label z ∈ {0, 1} indicating
whether the two elements of the corresponding pair belong to the
same class or not. The formulation of contrastive loss is as follows:

LC =
1

2M

M∑
i=1

(
zi · d2i + (1− zi)max(ρ− di, 0)2

)
, (4)

where M is the number of pairs. di is the Euclidean distance be-
tween the two embeddings of the elements in the i-th pair

di = ‖f(pi,1;ω)− f(pi,2;ω)‖2,

where pi,1 and pi,2 are the two elements from the i-th pair, f(·;ω) is
a non-linear function which represents the embedding system and ω
represents the model parameters. The distance between embeddings
with different class labels is expected to be larger than a margin ρ.

3. ENSEMBLE ADDITIVE MARGIN SOFTMAX LOSS

This section presents the details of our proposed loss function, called
EAM-Softmax loss.

3.1. Additive Margin Softmax Loss

As stated in Section 2.2, A-Softmax is not flexible enough. To
overcome this shortcoming of A-Softmax and explore more possible
margins, additive margin softmax (AM-Softmax) loss [11] adopts a
simpler function ψ(θ) = cos(θ)−m and further normalizes x. The
AM-Softmax loss is defined as follows:

LAMS =
1

N

N∑
i=1

− log
ecos(θyi,i)−m

ecos(θyi,i)−m +
∑c
j=1;j 6=yi e

cos(θj,i)
.

The traditional softmax loss aims to learn a weight vector set
and bias set for different classes that satisfy wT

yixi+byi > wT
j xi+

bj (j ∈ {1, . . . , c}, j 6= yi). And the decision boundary satisfies
min{(wT

yixi + byi) − (wT
j xi + bj)} = 0. But AM-Softmax loss

obtains a boundary satisfying min{cos(θyi,i) − cos(θj,i)} = m,
which forces the embeddings to be more discriminative and makes
the verification to be more robust.

Since a large margin m might push the decision boundary too
hard and make the training difficult to converge, a hyperparameter s
is introduced to scale the cosine value and the actual AM-Softmax
loss function is given by:

LAMS =
1

N

N∑
i=1

− log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑c
j=1;j 6=yi e

s·cos(θj,i)
.

3.2. Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt independence criterion (HSIC) [12] indicates
the independence of two random variables A and B, and the empir-
ical HSIC is an estimator of HSIC given a finite number of observa-
tions.

Definition 1 (Empirical HSIC) Consider a series of n independent
observations Z = {(a1,b1), . . . , (an,bn)} ⊆ A × B drawn from
pab. The empirical HSIC is given by

HSIC(Z,F ,G) = (n− 1)−2tr(KHLH), (5)

where K and L are Gram matrices with Kij = κ(ai,aj), Lij =
`(bi,bj). Here, κ(ai,aj) and `(bi,bj) are the kernel functions
defined in space F and G respectively. H = In − n−1Jn, where
In and Jn ∈ Rn×n are an identity matrix and a matrix of all ones
respectively.

3.3. Ensemble Additive Margin Softmax Loss

Diversity in weak learners proves to be critical for the performance
of ensemble models. Inspired by the work in [16], we exploit parallel
fully connected layers to encourage diversity in homogenous learn-
ers. Weights in these layers are highly pairwise independent with the
constraint of HSIC. Moreover, the kernel functions in HSIC which
map variances into reproducing kernel Hilbert spaces (RKHS) give
it the ability to measure nonlinear dependence.

Unlike classification tasks in [16], the classification layer in em-
bedding systems is not suitable for exploiting different models since
it will no longer be used once the training is finished. Hence, we add
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the HSIC constraint to the embedding layer rather than the classifi-
cation layer.

Assume that there are V parallel fully connected layers for em-
bedding in the ensemble systems, and each fully connected layer
contains a weight matrix W ∈ Rl×n where l and n are the in-
put size and output size of the embedding layer respectively. The
formulation of HSIC constraint for the v-th weight matrix W(v)

(v ∈ {1, . . . , V }) is as follows:

HSIC(W(v)) =

V∑
u=1;u6=v

(n− 1)−2tr(K(v)HK(u)H), (6)

where K
(v)
ij = k(W

(v)
i ,W

(v)
j ) and K

(u)
ij = k(W

(u)
i ,W

(u)
j ), with

W
(v)
i being the i-th column of W(v). Although more complex ker-

nels can be expected to achieve better performance, inner product
kernel K = WTW is just adopted for illustration in this paper.
Since weight matrix with small magnitude will have small HSIC
constraint, {W(v)} are normalized along vertical axis.

Note that the time and space complexity of the HSIC constraint
computation mainly depends on the number of columns in matrix
W, which equals to the dimensionality of embedding vectors in
our network architectures. Hence, with a low dimensionality of em-
bedding vectors which is typically adopted in practice, we can eas-
ily handle several models in the ensemble without worrying about
the rapidly increasing memory usage and computational cost faced
by [16].

There are two ways to construct the final ensemble model. The
first one is to average the outputs of the fully connected layers, and
this is equivalent to averaging the weights of the fully connected
layers since

1

V

V∑
v=1

([
W(v)

]T
x
)
=
( 1

V

V∑
v=1

W(v)
)T

x.

The second way is to concatenate the outputs of the fully con-
nected layers. One shortcoming of this way is that the embedding
size and the number of parameters in the classification layer are pro-
portional to the number of models in the ensemble, leading to higher
storage and computational burden. Hence, we adopt the first way to
construct the final ensemble model in this paper.

Rather than optimizing the ensemble model by multiple stan-
dalone softmax loss functions, which is adopted in [16] and may
lead to inconsistency between training and inference, we directly av-
erage the outputs of embedding layers before they are forwarded to
the classification layer and optimize the ensemble model by a single
softmax loss function.

Finally, by combining the AM-Softmax loss and the HSIC con-
straint for the embedding layers, we can get the formulation of en-
semble additive margin softmax (EAM-Softmax) loss for speaker
embedding systems:

LEAMS =− V

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑c
j=1;j 6=yi e

s·cos(θj,i)

+ λ

V∑
v=1

V∑
u=1;u6=v

(n− 1)−2tr(K(v)HK(u)H),

where λ is a hyperparameter denoting the tradeoff between the
AM-Softmax loss and the HSIC constraint.

Table 1. Dataset for evaluation. POI denotes Person of Interest.
Dataset # Dev Test Total

VoxCeleb1
POIs 1,211 40 1,251

utterances 148,642 4,874 153,516
hours - - 352

VoxCeleb2
POIs 5,994 118 6,112

utterances 1,092,009 36,237 1,128,246
hours - - 2,442

4. EXPERIMENTS

We compare our method with other baselines in real dataset.

4.1. Dataset

In the experiments, we use two datasets including VoxCeleb1 [4]
and VoxCeleb2 [9]. Both datasets are gender balanced and contain
a large number of utterances from thousands of speakers. The ut-
terances are collected from YouTube videos in which the speakers
belong to different races and have a wide range of accents. The
datasets contain background noise from a large number of environ-
ments, e.g., overlapping speech, which makes the audio segments
challenging for speaker verification.

Both datasets are split into development set and test set. We
adopt the same strategy as that in [9] for evaluation. In particular, the
development set of VoxCeleb2 is used for training and the test set of
VoxCeleb1 is used for testing. Details of VoxCeleb1 and VoxCeleb2
are described in Table 1. There are no overlapping identities between
these two datasets.

4.2. Implementation Details

In order to facilitate fair comparison of experimental results, we
try to make our experimental settings consistent with those of base-
lines [4, 9], except for the loss functions and ensemble strategy. Thus
we adopt similar network architectures, data processing, training and
testing strategies in our experiments.
Networks. Network architectures are modified from the original
residual networks (ResNet) [17] to take spectrograms as input fea-
tures. In particular, ResNet-34 and ResNet-50 are used in our experi-
ments. The details of network architectures are described in Table 2.
With an input feature length of 512, the output size of conv5 x will
be 9 × h, where h is determined by the audio segment length. The
conv6 layer is employed to combine information from different fre-
quency domains, where the filter size is 9× 1 and the output size is
1× h. The adaptive average pool avgpool, which supports different
input sizes, calculates a temporal mean of size 1×1. These modifica-
tions make the network architectures sensitive to frequency variance
rather than temporal position, which is desired in text independent
SV.
Features. Spectrograms computed through a sliding hamming win-
dow are used as input features. Window width and window step are
25ms and 10ms respectively. Feature length is set to 512. Normal-
ization is performed along axis of frequency.
Hyperparameter. Margin m and scale factor s for AM-Softmax
loss are set to 0.35 and 30.0 respectively. Ensemble number V = 4.
Hyperparameter λ for balancing AM-Softmax loss and HSIC con-
straint in the EAM-Softmax loss is set to 0.1.
Training. 3-second utterances are randomly sampled from each au-
dio file in training, each producing a spectrogram of size 512 ×
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Table 2. Network architectures modified from ResNet-34 and
ResNet-50 for spectrogram inputs. The conv6 layers are imple-
mented with 2d convolutional layers, where the number of groups
equals to the number of channels.

layer name 34-layer 50-layer
conv1 7× 7, 64, stride 2

maxpool 3× 3 max pool, stride 2

conv2 x
[
3× 3, 64

3× 3, 64

]
× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

conv3 x
[
3× 3, 128

3× 3, 128

]
× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 4

conv4 x
[
3× 3, 256

3× 3, 256

]
× 6

 1× 1, 256

3× 3, 256

1× 1, 1024

× 6

conv5 x
[
3× 3, 512

3× 3, 512

]
× 3

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

conv6 9× 1, 512, stride 1 9× 1, 2048, stride 1
avgpool 1× 1, adaptive average pool, stride 1

embedding 512× 512 2048× 512

classification 512× 5994

300. Models are optimized by momentum stochastic gradient de-
scent (SGD), in which the momentum is 0.9 and the weight decay is
5 × e−4. Mini-batch size is 64. Learning rate is initialized as 0.1.
For the 34-layer network, the learning rate is divided by 10 after the
6-th and the 12-th epochs. For the 50-layer network, the learning rate
is divided by 10 after the 10-th and the 20-th epochs. The training
terminates earlier to avoid overfitting if the performance on a valida-
tion set, which is randomly sampled from VoxCeleb1 development
set, stops improving after 12 epochs for the 34-layer network and 20
epochs for the 50-layer network.
Testing. Full length utterances are used in testing, so the generated
spectrograms are in different sizes. Adaptive average pooling is em-
ployed to output embeddings of the same size.

4.3. Metric

Two metrics are used for performance evaluation:

(1) Equal error rate (EER): the error rate when false rejection
probability Pfr equals false acceptance probability Pfa;

(2) Minimum detection cost function (minimum DCF): similar to
EER, but takes different costs of misclassification and uneven
target/nontarget probability into account. The formulation of
minimum DCF is given by

Cmindet = min{Cfr ∗Pfr ∗Ptar +Cfa ∗Pfa ∗ (1−Ptar)},

where Cfr and Cfa indicate the cost of false rejection and
false acceptance respectively, and Ptar is the target probabil-
ity. All of the three parameters are application dependent. In
our experiments, we adopt the same values as those in [9] for
Cfr (1.0), Cfa (1.0) and Ptar (0.01).

Table 3. Experimental results. Here, * denotes that the results are
from [9]. The letters in the brackets are the initials of loss func-
tions, where S, C, AMS and EAMS denote softmax, contrastive,
AM-Softmax and EAM-Softmax respectively.

Model Trained on Cmindet EER (%)
i-vector + PLDA VoxCeleb1 0.73* 8.8*
VGG-M (S) VoxCeleb1 0.75* 10.2*
VGG-M (C) VoxCeleb1 0.71* 7.8*
VGG-M (C) VoxCeleb2 0.609* 5.94*
ResNet-34 (C) VoxCeleb2 0.543* 5.04*
ResNet-50 (C) VoxCeleb2 0.449* 4.19*
ResNet-34 (AMS) VoxCeleb2 0.304 3.35
ResNet-34 (EAMS) VoxCeleb2 0.305 3.14
ResNet-50 (AMS) VoxCeleb2 0.303 3.10
ResNet-50 (EAMS) VoxCeleb2 0.278 2.94

4.4. Baseline

Methods and results explored in the experiments of [4, 9] are used
as baselines, including:

(1) I-vector based embedding system with a PLDA back-end;

(2) End-to-end embedding systems with a cosine similarity based
back-end, in which the architectures are modified from net-
works introduced by visual geometry group (VGG-M) [18] or
ResNet [17]. Those networks modified from ResNet are ex-
actly the same as the networks employed in the experiments
of AM-softmax loss and EAM-Softmax loss, except for the
extra embedding layer.

For the end-to-end embedding systems, softmax loss and con-
trastive loss are employed. Nevertheless, standalone contrastive loss
is hard to learn. Baseline models supervised by contrastive loss are
obtained in two stages. First, softmax loss is used to initialize the
weights of networks. Then the classification layer is replaced by
a fully connected layer with a smaller output size. This fully con-
nected layer is treated as the embedding layer and the contrastive
loss is used for tuning its parameters.

4.5. Results

Results on VoxCeleb1 test set are listed in Table 3. Our method
achieves state-of-the-art performance, decreasing EER to 2.94%
and minimum DCF to 0.278, which are 29.8% and 38.1% relatively
lower than the best results in [9].

VGG-M architecture trained with softmax loss is slightly weaker
than the traditional i-vector based approach, but VGG-M architec-
ture trained with contrastive loss surpasses i-vector based approach.
Furthermore, end-to-end systems using AM-Softmax loss outper-
form all of the baselines, and approaches using EAM-Softmax loss
achieve the best results.

5. CONCLUSION

This paper first adapts the AM-Softmax loss to speaker verification,
and then proposes a novel EAM-Softmax loss for speaker verifica-
tion. Experiments on real datasets show that the proposed methods
can achieve state-of-the-art performance.
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