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ABSTRACT

In this article we propose a novel approach for adapt-
ing speaker embeddings to new domains based on adversar-
ial training of neural networks. We apply our embeddings
to the task of text-independent speaker verification, a chal-
lenging, real-world problem in biometric security. We fur-
ther the development of end-to-end speaker embedding mod-
els by combing a novel 1-dimensional, self-attentive resid-
ual network, an angular margin loss function and adversarial
training strategy. Our model is able to learn extremely com-
pact, 64-dimensional speaker embeddings that deliver com-
petitive performance on a number of popular datasets using
simple cosine distance scoring. One the NIST-SRE 2016 task
we are able to beat a strong i-vector baseline, while on the
Speakers in the Wild task our model was able to outperform
both i-vector and x-vector baselines, showing an absolute im-
provement of 2.19% over the latter. Additionally, we show
that the integration of adversarial training consistently leads
to a significant improvement over an unadapted model.

Index Terms— Speaker Verification, Adversarial Train-
ing , Domain Adaptation, End-to-End

1. INTRODUCTION

Text-Independent Speaker Verification systems are binary
classifiers that given two recordings answer the question:
Are the people speaking in the two recordings the same per-
son?

The answer is typically delivered in the form of a scalar
value or verification score. Verification scores can be formu-
lated as a likelihood ratio, as in the popular i-vector/PLDA
approach [1, 2]. An alternate approach is to use simple dis-
tance metrics like mean-squared error or cosine distance. Ver-
ification models that can be scored like this typically need to
optimize the distance metric itself, i.e. they are optimized
end-to-end. While contrastive loss based end-to-end face ver-
ification models have shown state-of-the-art performance [3],
their adoption in the speaker verification community has not
been widespread due to the difficulties associated with train-
ing such models.

State-of-the-art speaker verification systems follow the same
recipe as i-vector systems by using a LDA/PLDA classifier,
but replace the i-vector extractor with a Deep Neural Network
(DNN) feature extractor [4]. The DNN embedding model
is trained by minimizing the cross-entropy loss over speak-
ers in the training data. While cross-entropy minimization is
simpler than optimizing contrastive losses, the nature of the
verification problem makes learning a good DNN embedding
model challenging. This is evidenced by the Kaldi x-vector
recipe, which we use as one of the baseline systems in this
work. The recipe involves extensive data preparation, fol-
lowed by a multi-GPU training strategy that involves a so-
phisticated model averaging technique combined with a natu-
ral gradient variant of SGD [4]. Replicating the performance
of x-vectors with conventional first order optimizers is non-
trivial [5].

In this article we present Domain Adversarial Neural Speaker
Embeddings (DANSE) for text-independent speaker verifica-
tion. We make the following contributions:

• We propose a novel architecture for extracting neural
speaker embeddings based on a 1-dimensional residual
network and a self-attention model. The model can be
trained using a simple data sampling strategy and using
traditional first order optimizers.

• We show that the DANSE model can be optimized end-
to-end to learn extremely compact (64-dimensional)
embeddings that deliver competitive speaker verifica-
tion performance using simple cosine scoring.

• Finally, we propose to integrate adversarial training
into part of learning a speaker embedding model, in
order to learn domain invariant features [6].

Modern speaker verification datasets like NIST-SRE 2016
and Speakers in the Wild (SITW) are challenging because in-
domain or target data is not available for training verification
systems [7, 8]. This leads to a domain shift between training
and test datasets, which in turn degrades performance. Our
key insight in this work is that verification performance can
be improved significantly by encouraging the speaker embed-
ding model to learn domain invariant features. We achieve
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Fig. 1. Domain Adversarial Neural Speaker Embedding Model

this through Domain Adversarial Training (DAT) using the
framework of Gradient Reversal [9]. This allows us to learn
domain invariant speaker embeddings using a small amount
of unlabelled, target domain data. The gradient reversal
model has been applied previously to the speaker verification
problem in the i-vector domain [6], and our work extends
this model to work directly with speech features (MFCC,
Spectrogram etc).
One of the main objectives of this work is to show that do-
main robust speaker recognizers can be learned end-to-end -
a task which has proved especially challenging on the NIST
datasets. Our experiments suggest that the main requirement
for learning such models is to optimize for similarity, which
we achieve by using a margin based loss function. Addi-
tionally, we make the use of a data sampling strategy that is
easy to implement. We believe that this is an important fac-
tor as it encourages replication and further improvements to
the model. One advantage of end-to-end optimization is that
the learned speaker embeddings are more inherently discrim-
inative. Intuitively, such embeddings are likely to be more
beneficial when used as components or conditional inputs to
other speech processing applications [10, 11].

2. LEARNING DOMAIN INVARIANT SPEAKER
EMBEDDINGS

2.1. Feature Extractor

The first step for learning discriminative speaker embeddings
is to learn a mapping F (Xs) −→ f, f ∈ RD from a se-
quence of speech frames from speaker s to a D-dimensional
feature vector f. F (X) can be implemented using a variety of
neural network architectures [4, 12, 13, 14]. In this work we
use a deep residual network (ResNet) as our feature extractor
[15]. Motivated by the fact that speech is translation invari-
ant along the time-axis only, we propose to build our model

using 1-dimensional convolutional layers. The ResNet archi-
tecture allows us to train much deeper networks, and leverage
the greater representational capacity afforded by these mod-
els. The first convolutional layer utilizes a 3XF filter, where
F is the dimension of the frequency axis. The residual blocks
are followed by an attentive statistics pooling layer (described
in next section) and two fully connected layers. In total the
feature extractor consists of 52 layers.

2.2. Self-Attentive Speaker Statistics

Self-Attention models are an active area of research in the
speaker verification community [14, 16, 17]. Intuitively, such
models allow the network to focus on fragments of speech
that are more speaker discriminative. The attention layer
computes a scalar weight corresponding to each time-step t:

et = vT f(Wht + b) + k (1)

These weights are then normalized, αt = softmax(et), to
give them a probabilistic interpretation. We use the attention
model proposed in [16], which extends attention to the mean
as well as standard deviation:

µ̃ =

T∑
t

αtht (2)

σ̃ =

T∑
t

αtht � ht − µ̃� µ̃ (3)

In this work we apply a self attention model on convolutional
feature maps, as indicated in Fig. 1. The last residual block
outputs a tensor of size nBXnFxT , where nB is the batch
size, nF is the number of filters and T is time. The input to
the attention layer, ht, is a nF dimensional vector.
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2.3. Classifier

The classifier block, C(f, θy), is arguably the key component
of the model, as it is responsible for learning speaker discrim-
inative features. This is especially challenging for verification
models as we would like to optimize for similarity. The most
natural way to achieve this is by using a triplet loss, how-
ever these models are known to be difficult to train. Recently,
loss functions based on angular and additive margins have
been introduced which are able to outperform triplet models
[18, 19, 20]. The Additive Margin Softmax (AM-Softmax)
loss function is one such algorithm with an intuitive interpre-
tation.

LAMS = − 1

n

n∑
i=1

log
es.(cosθyi−m)

ecosθs.(yi−m) +
∑
j 6=yi e

s.(cosθj)

= − 1

n

n∑
i=1

log
es.(WT fi−m)

es.(WT fi−m) +
∑
j 6=yi e

s.(WT fj)

(4)

The loss retains the structural form of the popular Softmax
loss, but transforms it into a large-margin classifier. WT and
fi are the normalized weight vector and speaker embedding
respectively. This normalization is crucial, as it forces the
classification only depends on the cosine. The margin m
insures that correct classes are more similar than incorrect
classes by a given threshold, and the the scale factor ∫ helps
with model converge faster.

2.4. Domain Adversarial Training

So far we have covered the feature extractor F (X; θf )
and classifier C(f, θy) part of our proposed model. In or-
der to encourage our model to learn a symmetric feature
space, we augment our network with a domain discriminator
D(f, θd) −→ di. The discriminator takes features from both
the source and target data and outputs the posterior probabil-
ity that an input feature belongs to the target domain.

E(θf , θy, θd) =

N∑
i=1;
di=0

Ly(C(F (Xi; θf ); θy), yi)

−λ
∑

i=1...N

Ld(D(F (Xi; θf ); θd), di)

(2)

Where Ly is the AM-Softmax loss described in section.
and Ld is the the binary cross-entropy loss. The objective of
domain adversarial training is to learn parameters θf , θy, θd
that deliver a saddle point of the functional (2):

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d) (5)

θ̂d = arg max
θd

E(θ̂f , θ̂y, θd) (6)

At the saddle point, the parameters of the domain classifier
θd minimize the domain classification loss, while the parame-
ters θy of the speaker classifier minimize the label prediction
loss. The feature mapping parameters θf minimize the la-
bel prediction loss - so the features are discriminative, while
maximizing the domain classification loss - so the features are
domain invariant. The parameter λ controls the trade-off be-
tween the two objectives [9]. A saddle point of (5)-(6) can be
found using backpropagation:

θf ←− θf − µ1

(
∂Liy
∂θf

− λ∂L
i
d

∂θd

)
(7)

θy ←− θy − µ2

∂Liy
∂θy

(8)

θd ←− θd − µ3
∂Lid
∂θd

(9)

Where µ1,µ2 and µ3 are learning rates.
The negative coefficient in eq. (7) induces a reverse gradient
that maximizes Lid and makes the features from the source
domain similar to those from the target domain. The imple-
mentation of the gradient reversal layer is conceptually simple
- it acts as the identity transformation during forward propa-
gation, and multiplies the gradient by −λ during backpropa-
gation.

3. EXPERIMENTAL SETUP

Training Data All our systems are trained using data from
previous NIST-SRE evaluations (2004-2010) and Switch-
board Cellular audio for training the proposed DANSE model
as well as the x-vector and i-vector baseline systems. For
speech features extracted 23-dimensional MFCC features
from the training set, which mean variance normalization.
The baseline i-vector and x-vector systems were trained
using the recipes provided with Kaldi. We note that the per-
formance of our baseline systems can be further improved by
adapting the PLDA classifier to the target domain [4].

Model: The feature extractor consists of 3XF input convo-
lutional layer followed by 4 residual blocks [3,4,6,3], con-
sisting of 48 layers. This is followed by an attentive statis-
tics layer and 2 fully connected layers. The classifier con-
sists of a one hidden layer and the AM-Softmax output layer.
The Domain Discriminator consists of 2 hidden layers of 256
units each and the binary cross-entropy (BCE) output layer.
We use Exponential Linear Unit (ELU) activations and batch-
normalization on all layers of the network.

Optimization: We start by pre-training the feature extrac-
tor using standard cross-entropy training. Cross-entropy pre-
training is carried out using the RMSprop optimizer with a

6043



learning rate (lr) of 0.001. This learning rate is annealed by a
factor of 0.1 after epochs 4 & 8.

For training the DANSE model we found it beneficial to opti-
mize the feature extractor, classifier and domain discriminator
with different optimizers. The classifier is trained using RM-
Sprop with lr = 0.003, while the domain discriminator and
feature extractor are trained using SGD with lr = 0.001. In
all models the NIST data is given label ‘0’ and the unlabelled
target data is given the label ‘1’ for discriminator training.
We measure model performance on a held out validation set
to determine when to stop training. The m and s parameters
of the AM-Softmax loss are set to 0.6 and 30 respectively
in all our experiments, while the Gradient Reversal scaling
coefficient λ is fixed at 3.0.

Data Sampling: We use an extremely simple approach for
sampling data during training. We sample random chunks of
audio (3-8 seconds) from each recording in the training set.
We sample each recording 10 times to define an epoch. For
each mini-batch of source data, we randomly sample (with
repetition) a mini-batch from the unlabelled adaptation data
for adversarial training.

Speaker Verification: At test time we discard the domain
discriminator branch of the model, as it is not needed for ex-
tracting embeddings. Extraction is done by performing a for-
ward pass on the full recording, and using the 64-dimensional
fc3 layer as our speaker embeddings. Verification trials are
scored using cosine distance. Verification performance is re-
ported in terms of Equal Error Rate (EER).

4. RESULTS

NIST-SRE 2016: The 2016 edition of the NIST evaluation
presented a new set of challenges as compared to previous
years. The evaluation data consists of Cantonese and Tagalog
speakers. The change in language introduces a shift between
the data distributions of the training (source) and evaluation
data.
Adaptation Data: NIST also provides 2272 recordings of
unlabelled, in-domain, target data for adapting verification
systems.

Table 1. compares the performance of the proposed DANSE
model with the baseline i-vector and x-vector systems. The
DANSE outperforms the i-vector system, showing a 2.6% rel-
ative improvement in terms of the pooled EER. DANSE per-
forms at the level of x-vectors + PLDA, however we are un-
able to match the full x-vector + LDA/PLDA recipe. We also
see that DANSE outperforms the un-adapted AM-Softmax
model by a large margin, indicating the advantage of adver-
sarial training.

SPEAKERS IN THE WILD (SITW): The SITW database
provides a large collection of real-world data with speech

Model Classifier Cantonese Tagalog Pooled

i-vector PLDA 9.51 17.61 13.65
x-vector COSINE 36.44 41.07 38.69
x-vector LDA/PLDA 7.52 15.96 11.73
x-vector PLDA 7.99 18.46 13.32
AMS COSINE 11.44 21.22 16.28
DANSE COSINE 8.84 17.87 13.29

Table 1. Performance of different speaker verification sys-
tems on NIST-SRE 2016

from individuals across a wide array of challenging acoustic
and environmental conditions. The audio is extracted from
open-source video, and while consisting of English speakers
(like the training data) there is still a distribution shift due to
the difference in the microphones used.
Adaptation Data: We use a small random selection of 3000
recordings from the VoxCeleb dataset [21] as adaptation data.

Model i-vector x-vector AMS DANSE

EER 11.47 10.51 9.87 8.32

Table 2. Performance of different speaker verification sys-
tems on SITW

From Table 2. we see that the DANSE model displays the
strongest performance on the SITW dataset, showing a 2.19%
absolute improvement over the x-vector baseline. Compar-
ing the performance of our model with and without adver-
sarial adaptation, once again we see a clear advantage for
the former, with DANSE outperforming the un-adapted AM-
Softmax model by 1.5%.

5. CONCLUSION

In this work we we presented a novel framework for learning
domain-invariant speaker embeddings in an end-to-end fash-
ion. By combining a powerful deep feature extractor, an end-
to-end loss function and most importantly, domain adversar-
ial training we are able to learn extremely compact speaker
embeddings that deliver robust verification performance. Our
main finding is that through appropriate optimization, such
models can be learning using a relatively simple training and
data sampling strategy. In our parallel work, we extend the
framework presented here to incorporate ideas from the liter-
ature of generative adversarial networks, which yields further
performance improvements [22].
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