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ABSTRACT

Deep speaker embedding learning is an effective method for speaker
identity modelling. Very deep models such as ResNet can achieve
remarkable results but are usually too computationally expensive for
real applications with limited resources. On the other hand, sim-
ply reducing model size is likely to result in significant performance
degradation. In this paper, label-level and embedding-level knowl-
edge distillation are proposed to narrow down the performance gap
between large and small models. Label-level distillation utilizes the
posteriors obtained by a well-trained teacher model to guide the opti-
mization of the student model, while embedding-level distillation di-
rectly constrains the similarity between embeddings learned by two
models. Experiments were carried out on the VoxCeleb1 dataset.
Results show that the proposed knowledge distillation methods can
significantly boost the performance of highly compact student mod-
els.

Index Terms— knowledge distillation, teacher-student learn-
ing, speaker verification, speaker embedding

1. INTRODUCTION

Recently, speaker embeddings learned by deep architectures have
shown impressive performance for speaker recognition. Speaker
embeddings denote fixed-dimensional vector-based representations
for modelling speakers’ identities. From Gaussian Mixture Model
(GMM) based super-vector [1, 2], joint factor analysis (JFA) based
eigen-voice vectors[3], factor analysis (FA) based i-vectors[4], to the
recently arising deep speaker embeddings [5, 6, 7, 8, 9, 10], speaker
embedding learning has been a mainstream for speaker modelling in
speaker recognition now.

Speaker embeddings learned with very deep architectures such
as ResNet[11] are proven to achieve a very good performance [12,
13, 14]. However, these models comprise of millions of parame-
ters and demand tremendous memory and computation resources.
For real applications which usually need to run the program on a
resource-constrained embedded device, these advanced models can-
not be deployed easily. On the other hand, small models need much
less resources and are more suitable for deployment, but at the ex-
pense of performance degradation. Accordingly, we want to develop
an effective mechanism to boost the system performance of small
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models. To reduce the performance gap compared to the large deep
models, knowledge distillation will be a natural approach.

Knowledge distillation was proposed in [15] and has been suc-
cessfully applied to many applications such as image recognition[16],
speech recognition [17, 18, 19] and keyword spotting [20]. Knowl-
edge distillation is often used for domain adaptation and model
compression, the common method is to use the posteriors obtained
via a well-trained teacher model to guide the optimization of the
student model, this paradigm is often referred to as teacher-student
learning. In this paper, we propose to introduce the teacher-student
learning idea into the deep speaker embedding learning process.
Two knowledge distillation methods are developed.

• Label level knowledge distillation: The teacher model pro-
vides the predicted posteriors as the reference label for the
student model. The Kullback-Leibler divergence is used to
supervise the model optimization.

• Embedding level knowledge distillation: Directly use the
speaker embeddings learned by the teacher model to help
the optimization of the student model. More specifically,
similarity metrics such as minimum square error and cosine
distance are used to constrain the similarity of embeddings
learned from two models.

The remainder of this paper is organized as follows. Section 2
gives a brief introduction to deep speaker embedding learning. The
proposed label-level and embedding-level knowledge distillation are
introduced for speaker recognition in Section 3. Detailed experimen-
tal setups and result analysis will be given in Section 4. Section 5
concludes the whole paper.

2. DEEP SPEAKER EMBEDDING LEARNING

In the deep speaker embedding framework, a speaker discriminative
DNN is first trained on the utterances from a large set of speakers.
This training process can be performed at the frame level [21, 22]
or utterance level [6, 7, 23], while the utterance-level training makes
more sense and achieves a better performance. More powerful deep
architectures such as ResNet and more advanced loss functions such
as triplet loss [6, 9], angular softmax [10] and generalized end-to-end
loss [24] have been developed, achieving impressive results on the
standard datasets. In this work, we adopt the normal softmax com-
bined with cross entropy loss as the training criterion, more complex
frameworks will be left in future work.
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Fig. 1. Knowledge distillation for deep speaker embedding learning in speaker recognition. (1) Left: Label-level teacher-student learning
architecture, the student optimization is guided by the posteriors predicted by a pretrained teacher model . (2) Right: Embedding-level
teacher-student learning system, directly constraining the similarity of speaker embeddings learned from the teacher and student model.

3. THE TEACHER-STUDENT LEARNING FOR DEEP
SPEAKER EMBEDDING

Teacher-student learning uses a well-performing teacher model to
help the optimization of a student model. For instance, researchers in
[18] use the ensembles of several acoustic models to help optimizing
a single acoustic model for speech recognition. Similar to [17, 25]
for speech recognition, we use teacher-student learning to reduce
the performance gap between large deep models and small-footprint
models for speaker recognition. In this paper, two frameworks are
proposed for the knowledge distillation between deep speaker em-
beddings, including the label-level and embedding-level, which will
be described in the following sections. The two different architec-
tures are illustrated in Figure 1.

3.1. Cross-entropy training

The most common criterion for speaker embedding learning is the
cross-entropy (CE), which is defined as following,

LCE = −
N∑
i=1

C∑
j=1

ŷij log y
i
j (1)

where i is the sample index, N denotes the number of samples. ŷi

represents the ground truth label which is a one-hot vector, yi is the
predicted output from the model. j denotes the j-th class, C denotes
the number of classes.

3.2. Label-level knowledge distillation

In the speaker embedding learning task, the outputs of the teacher
and student models are both posteriors over the same set of speakers
and the student model is expected to mimic the teacher model if
we force them to emit similar posteriors. This is usually achieved

by minimizing the Kullback-Leibler divergence (KLD) between the
student and teacher distributions [17, 25]. The corresponding KLD
loss is defined in Equation 2

LKLD = −
N∑
i=1

C∑
j=1

ỹij log y
i
j (2)

where ỹi is the posteriors of the i-th sample predicted by the teacher
model, it’s now a distribution (soft labels) rather than a simple one-
hot vector (hard labels). Compared to the hard labels, soft labels
contain more information (referred to as dark knowledge in [15]) of
the underlying label distribution which may benefit the optimization
of the student model. For simplicity, the “temperature term” in [15]
is neglected in our experimental settings. In the optimization, both
hard labels and soft labels are used, so the two losses can be com-
bined for the student model training as

L = LCE + αLKLD (3)

where α is a hyper-parameter to balance two losses.

3.3. Embedding-level knowledge distillation

Instead of performing the knowledge distillation at the label level,
i.e. the distribution of model outputs, it’s more intuitive to directly
constrain the similarity of learned embeddings from two models in
the deep embedding based speaker recognition framework. In this
work, minimum square error (MSE) and cosine distance (COS) loss
are developed as the optimization metric for embedding-level knowl-
edge distillation.

LMSE =

N∑
i=1

‖vi
t − vi

s‖2 (4)
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LCOS = −
N∑
i=1

vi
t · vi

s

‖vi
t‖‖vi

s‖
(5)

where vi
t represents the embedding computed by the teacher

model for the i-th sample, vi
s denotes the embedding computed by

the student model. The final loss function for model training is
LCE + βLMSE or LCE + γLCOS, respectively. β and γ are the corre-
sponding weighting parameters.

4. EXPERIMENTS

4.1. Dataset

All the experiments were carried out on the VoxCeleb1[26] dataset
which was recently released by Oxford. VoxCeleb is a large scale
text-independent speaker recognition dataset comprised of two re-
leases, VoxCeleb1 [26] and VoxCeleb2 [13]. Note that we only use
VoxCeleb1 in this paper. Moreover, no data augmentation method
was adopted in the experiments. Part 1 contains over 150000 utter-
ances from 1251 different celebrities. For the speaker verification
task, part 1 was split into the training part and the evaluation part.
The training part contains 148642 utterances from 1211 celebrities,
while the evaluation set contains about 4874 utterances from the rest
40 celebrities. The standard trial list for the verification contains
37720 pairs.

4.2. System setups and evaluation metric

The proposed knowledge distillation methods can be applied to stan-
dard speaker embedding learning models. In this work, we adopt a
similar architecture as described in [14] for the teacher model, since
a good performance was reported using this architecture on the Vox-
Celeb dataset. It’s a 34-layer neural network comprising of 16 resid-
ual blocks ({3, 4, 6, 3} [11]. The implementation of the ResNet ar-
chitecture follows the standard one as depicted in [11]. The detailed
network configuration of ResNet34 is shown in Table 1.

Table 1. The detailed configuration of the ResNet34 teacher model:
all filter sizes are set to 3 × 3, N denotes the frame number of the
input utterance.

Layers Output Size Channels Blocks
Conv Layers 64×N 16 -

Res1 64×N 16 3
Res2 32×N/2 32 4
Res3 16×N/4 64 6
Res4 8×N/8 128 3

Reshape & Average 128× 1 - -
FC Layer (embedding) 128× 1 - -

Output #speakers - -

For the student model, several different setups are investigated
in the experiments. The most intuitive choice is to use a ResNet
with less blocks. Two setups are adopted, namely ResNet16 and
ResNet10, with block number of residual blocks set as {1, 2, 3,
1} and {1, 1, 1, 1}, respectively. ResNet16 is around the half size
of ResNet34, while ResNet10 is the smallest model we can obtain
while keeping the same architecture with the ResNet34 teacher
model. Moreover, a different architecture was also investigated,
which is a simple 4-layer CNN with detailed configuration as shown
in Table 2. The CNN model is designed to mimic the ResNet

architecture, while each residual block is replaced with a simple
convolutional layer. A comparison of different models in terms of
parameter number and inference speed will be given in Section 4.4.

Table 2. The detailed configuration of the CNN student model, all
filter sizes are set to 3× 3, N denotes the frame number of the input
utterance.

Layers Output Size Channels
Conv Layers Output size Channels

Conv1 64×N 16
Conv2 32×N/2 32
Conv3 16×N/4 64
Conv4 8×N/8 128

Reshape & Average 128× 1 -
FC Layer (embedding) 128× 1 -

Output #speakers -

For all neural network based systems, 64-dimensional Fbank
features extracted with a frame-length of 25 ms are extracted at a
10 ms frame shift. Neural networks are trained with a mini-batch of
64 on a single GPU, stochastic gradient descent with momentum 0.9
and weight decay 1e−4 is used in the optimizer. Although the origi-
nal lengths of training utterances vary, we keep samples in one mini-
batch sharing the same frame number, which is a random integer
between 300 and 800. In the experiments, three hyper-parameters
α, β and γ mentioned in Section 3 are set as 1.0, 0.4 and 0.4, re-
spectively, which achieve the best results in the experiments.

Speaker embeddings are evaluated using both probabilistic lin-
ear discriminant analysis (PLDA) and cosine distance. All results
are reported in terms of equal error rate (EER) and minimum of the
normalized detection cost function, with the prior target probabil-
ity Ptarget set as 0.01 (minDCF0.01) and 0.001 (minDCF0.001), and
equal weights of 1.0 between misses Cmiss and false alarms Cfa.

4.3. Results and analysis

Results of different systems are summarized in Table 3. ResNet34
is the teacher model, while ResNet16, ResNet10 and CNN with no
knowledge distillation are three student model baselines. As shown
in Table 3, a deeper architecture achieves a better performance. The
ResNet34 teacher model achieves 4.852% and 6.045% EERs with
PLDA and Cosine Distance Scoring, respectively, which is compa-
rable to the results on the same dataset in the literature [14, 26, 27].

Different extents of performance degradation are observed with
different student models, ResNet16, ResNet10 and CNN achieve
EERs of 5.456%, 6.384% and 8.823% using PLDA backends, re-
spectively. Label-level knowledge distillation reduces the EERs
of three systems to 5.392%, 5.870% and 7.853%, while the
embedding-level knowledge distillation further boosts the perfor-
mance. From Table 3, it’s observed that embedding-level knowledge
distillation methods outperform the label-level one, which makes
sense since the goal we are optimizing now is more relevant to the
system performance. Cosine distance based distillation achieves
a better performance than MSE, the reason could be that MSE
constraint is too stringent, which harms the generalization ability.

It’s noticeable that the performance of the ResNet16 with knowl-
edge distillation using EmbeddingCOS can almost obtain the same ac-
curacy as the teacher model ResNet34, but with much less parame-
ters. For the simplest CNN student model, the ability of the proposed
knowledge distillation methods could be better reflected. A relative
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Table 3. Performance comparison of different systems. The first line represents the teacher model ResNet34 and the following lines denote
three student models, including ResNet16, ResNet10 and simple CNN as described in Section 4.2. Label, EmbeddingMSE and EmbeddingCOS

denote different knowledge distillation methods described in Section 3.

System Distillation PLDA Scoring Cosine Scoring
EER (%) minDCF0.01 minDCF0.001 EER (%) minDCF0.01 minDCF0.001

ResNet34 - 4.852 0.5161 0.7268 6.045 0.5342 0.6422

ResNet16

- 5.456 0.5739 0.7364 6.591 0.5969 0.7325
Label 5.392 0.5312 0.6613 6.230 0.5694 0.6270

EmbeddingMSE 5.154 0.5128 0.7080 6.479 0.5256 0.6745
EmbeddingCOS 4.857 0.5115 0.6700 6.410 0.5705 0.7048

ResNet10

- 6.384 0.6354 0.7542 8.542 0.6971 0.7896
Label 5.870 0.5603 0.7179 7.322 0.5897 0.7628

EmbeddingMSE 5.604 0.5696 0.7645 7.200 0.6159 0.7105
EmbeddingCOS 5.472 0.5309 0.7808 7.312 0.6290 0.7639

CNN

- 8.823 0.6923 0.7271 23.26 0.8266 0.8883
Label 7.853 0.6262 0.7628 14.59 0.7585 0.8979

EmbeddingMSE 7.794 0.6542 0.7369 11.30 0.7141 0.8372
EmbeddingCOS 6.914 0.6706 0.7615 9.464 0.7169 0.8080

21.6% and 59.3% EER reduction is achieved using EmbeddingCOS

distillation in terms of PLDA and Cosine Scoring, respectively.

Fig. 2. Convergence comparison of student CNN model w/ or w/o
knowledge distillation.

The convergence speeds of the student CNN model with/without
knowledge distillation are depicted in Figure 2. It could be found
that the convergence speed is improved to different extents with dif-
ferent knowledge distillation methods. One interesting observation
is that the final accuracy achieved by the MSE loss distillation is even
lower than the original CNN, but the former system outperforms the
latter. Recall the limited performance gain obtained by label-level
knowledge distillation, both observation exhibits that the softmax
with cross entropy loss is not a perfect criterion for speaker embed-
ding learning. More powerful criterion such as angular-softmax and
end-to-end loss could be considered [6, 9, 14, 24], and knowledge
distillation with these settings will be left as the future work.

4.4. Model size and inference speed

Excluding the last layers which will not be used in the system im-
plementation, the mode size and inference speed are tested and com-
pared, and the results are shown in Table 4.

Reducing the models size will increase the inference speed ac-
cordingly. Recall the performance reported in Table 3, ResNet16 ob-
tains nearly the same performance with the teacher model ResNet34,

Table 4. Comparison on model sizes and inference speeds between
the teacher and student models. Inference speeds are tested on both
GPU (Tesla K40m) and CPU (Intel Xeon E5-2670)

Model # Parameters CPU time (ms) GPU time (ms)
ResNet34 1.35M 365.7 12.77
ResNet16 0.49M 157.5 5.816
ResNet10 0.32M 98.81 4.850

CNN 0.11M 33.84 1.795

but with only half of the parameters and inference time. Another ob-
servation is that although the performance gap between the teacher
and student model can be reduced with the proposed knowledge dis-
tillation methods, a larger model still gets better performance. For
real applications, a trade-off is still considered between the model
size and performance, while such a trade-off can be achieved more
easily using the proposed knowledge distillation methods.

5. CONCLUSION

Speaker embeddings learned by very deep architectures have exhib-
ited impressive performance on speaker recognition, however, these
advanced deep models are not suitable for deployment. In this pa-
per, we propose to use knowledge distillation with teacher-student
learning framework to bridge the performance gap between speaker
embeddings extracted by large and small models. Two knowledge
distillation architectures are proposed: 1) Label-level knowledge dis-
tillation, in which the posterior outputs of the teacher model is used
to guide the optimization of the student model. 2) Embedding-level
knowledge distillation, in which the similarity between embeddings
from teacher and student models is constrained. Experiments are
carried out on the VoxCeleb1 dataset, a standard 34-layer ResNet is
used as the teacher model, while three different models with differ-
ent sizes are used as the student models. Results consistently show
that the performance of the small student model can be boosted sig-
nificantly by the proposed knowledge distillation methods.
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