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ABSTRACT

We propose a Denoising Autoencoder (DAE) for speaker
recognition, trained to map each individual ivector to the
mean of all ivectors belonging to that particular speaker. The
aim of this DAE is to compensate for inter-session variability
and increase the discriminative power of the ivectors prior to
PLDA scoring. We test the proposed approach on the MCE
2018 1st Multi-target speaker detection and identification
Challenge Evaluation. This evaluation presents a call-center
fraud detection scenario: given a speech segment, detect if it
belongs to any of the speakers in a blacklist. We show that
our DAE system consistently outperforms the usual LDA +
PLDA pipeline, achieving a Top-S EER of 4.33% and Top-
1 EER of 6.11% on the evaluation set, which represents a
45.6% error reduction with respect to the baseline system
provided by organizers.

Index Terms— MCE 2018 challenge, speaker recogni-
tion, blacklist detection, denoising autoencoder, speaker em-
beddings

1. INTRODUCTION

Since the introduction of total variability modeling and ivec-
tors [1] as a fixed and low dimensional representation of
speech segments, the GMM-ivector, and more recently DNN-
ivector [2, 3] paradigm, followed by a discriminative back-
end, has become the de-facto standard in speaker recognition.
This backend usually consists on Linear Discriminat Anal-
ysis (LDA) to project ivectors to a lower dimension while
increasing their discriminative power, length-normalization,
and Probabilistic Linear Discriminant Analysis (PLDA) to
account for inter-session variability [4, 5, 6]. More recently,
alternative representations, such as x-vectors [7, 8], have
been proposed. However, LDA followed by PLDA remains
the state-of-the-art backend.

We propose the use of a Denoising Autoencoder (DAE) [9]
to increase the discriminative power of ivectors and compen-
sate for inter-session variability. An autoencoder is a neural
network architecture that learns an internal representation that
allows it to reconstruct its inputs. A denoising autoencoder
is a particular type of autoencoder that learns to reconstruct
a “clean” version of its inputs. In our case, the DAE takes

as input an ivector and tries to map it to the mean of all the
ivectors of that particular speaker. To this end, the DAE is
trained to maximize the cosine distance between its output
and the mean ivector for that speaker. Our proposed backend
consists of: length normalization, DAE transformation and
PLDA scoring.

We test this approach in the MCE 2018 1st Multi-target
speaker detection and identification Challenge Evaluation.
The task for the MCE 2018 Evaluation is to detect if a given
speech segment belongs to any of the speakers in a blacklist.
The challenge is divided into two related subtasks: Top-S
detection, i.e. detecting if the segment belongs to any of the
blacklist speakers; and Top-1 detection, i.e. detecting which
specific blacklist speaker (if any) is speaking in the segment.
We refer the reader to [10] for a detailed description of the
challenge.

In this paper, we describe in detail our submission for the
challenge and show that the proposed DAE + PLDA backend
outperforms the conventional LDA + PLDA approach. Our
best system achieves a Top-S EER of 4.33% and Top-1 EER
of 6.11% on the evaluation set, which represents a 45.6% er-
ror reduction with respect to the baseline system provided by
the organizers. We have released source code for DAE train-
ing and testing1.

Previous work has proposed a number of alternatives to
LDA [11, 12] to account for the multimodal, non-Gaussian
distribution of ivectors. Our approach differs from these al-
ternatives in the sense that it is not designed to replace LDA
but to attack the problem from a different angle. As we show
in Section 4, in fact, both techniques can be combined by us-
ing LDA in the DAE-transformed ivectors or by transforming
LDA-projected ivectors.

The use of denoising autoencoders for speaker recogni-
tion has been previously proposed for tasks such as denoising
ivectors [13] or domain adaptation [14]. In [15, 16] an ap-
proach similar to ours is proposed. First, a Restricted Boltz-
mann Machine (RBM) is trained and then a DAE is fine-
tuned. In contrast, our approach is much simpler. We show
that even the simplest DAE can outperform the traditional
LDA-PLDA backend.

The rest of the paper is organized as follows. Section 2
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provides an overview of the MCE 2018 evaluation, Section 3
describes both the baseline LDA-PLDA system and the pro-
posed DAE-PLDA system and Section 4 presents the results.
Finally, conclusions are drawn in Section 5.

2. CHALLENGE OVERVIEW

The MCE 2018 data have been generated from real call cen-
ter user-agent telephone conversations. Instead of raw audio
data, organizers processed the original data and provided 600-
dimensional ivectors. This way, no special signal processing
knowledge was needed to enter the evaluation. The details on
the training of this ivector system can be found in [10].

The challenge data was distributed to the participants di-
vided into three separate subsets: training, development and
evaluation. The training and development portions were la-
beled with speaker identity, while the evaluation set was un-
labeled. The composition of the different subsets is summa-
rized in Table1.

Table 1. Summary of the different subsets
# speakers # utterances

Training blacklist 3.631 10.893
Training background 5.000 30.952
Development blacklist 3.631 3.631
Development background 5.000 5.000
Evaluation ? 16.017

Two complementary tasks were considered: Top-S detec-
tion and Top-1 detection. For Top-S detection, the system
must decide whether a test sample belongs to any of the black-
list speakers or not. For Top-1 detection, the system must de-
cide if a test sample belongs to a particular blacklist speaker
or not [10]. For both tasks, the performance metric is Equal
Error Rate (EER).

During the development of our system, we focused on the
Top-1 detection task. We found it a more challenging and
complete task, in the sense that improving Top-1 detection
will in general improve Top-S detection -at the limit, a perfect
Top-1 detector would also have perfect Top-S performance-,
but the converse is not true: a perfect binary blacklist/not
blacklist detector would provide no information about the
identity of the particular blacklist speaker.

3. SYSTEM DESCRIPTION

3.1. LDA–PLDA system

This system uses the backend that can be considered the state
of the art in speaker recognition. In particular:

• Ivectors are projected to unit length (length-normalized).

• LDA is used to project the ivectors to a lower dimension
and maximize their discriminative power.

• PLDA is used to compute the score and compensate for
between-session variability.

In our case, the dimension after the LDA projection is
450 and the considered PLDA variant is the two-covariance
model [17]. For model selection and hyperparameter tuning,
we trained on the training set and evaluated over the devel-
opment set. Both LDA and PLDA models were trained using
background + blacklist training data.

3.2. DAE System

The proposed system consists of a neural network that has as
input an ivector and as output a vector with the same dimen-
sion. During training, the target is the mean of all ivectors
from that speaker, and we try to maximize the cosine distance
(or minimize cosine proximity) between the output and the
target. During our experiments we found that cosine proxim-
ity worked better than Mean Squared Error for this task.

Our proposed architecture, shown in Figure 1, has a sin-
gle hidden layer with 2000 units and tanh activation, and an
output layer with dimension 600 and linear activation.

Fig. 1. Proposed DAE architecture

Additionally to this simple DAE, we test a possible exten-
sion as proposed in [13]. We extend the DAE to try to dis-
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criminate between speakers. The architecture of this discrim-
inative DAE is shown in Figure 2. We extend the DAE with
two additional hidden layers of sizes 2000 and 1000 respec-
tively and a new output layer that makes a prediction about
the speaker identity. During training, the loss is a linear com-
bination of cosine proximity for the intermediate output and
cross-entropy for the final output. The rationale behind this
extension regards with the computation of more discrimina-
tive transformations at the intermediate output. However, as
shown in Section 4, this extension did not bring any additional
improvement over the simple DAE.

Fig. 2. Discriminative DAE architecture

We train both neural networks with Adam optimizer, a
learning rate of 0.001 and a batch size of 128 for 5 epochs
using only the background training set. For that, we used
Keras with Tensorflow backend.

Once we have the DAE-transformed ivectors, we used
them to train a PLDA backend as in the previous system.
PLDA is trained on background and blacklist training data.

3.3. Score normalization

Concerning score normalization, we have used symmetric
normalization (S-Norm). A set of speakers, in this case the
background speakers from the training set, is used to score the
test or enrollment segments against each one of the speakers
in this cohort. In this way, the score after S-Norm is given by

Ss =
1

2

(
S − µt

σt
+
S − µm

σm

)
,

where S is the raw score, µt and σt are the mean and standard
deviation of the scores of the test segment against the cohort,
and µm and σm are the mean and standard deviation of the
scores of the speaker model against the cohort.

We have used a variant termed Top Norm in which only
the top N scores are considered to estimate the mean and stan-
dard deviation. We refer the reader to [18] for a more detailed
description of the different score normalization schemes.

For the baseline LDA-PLDA system, we use Nt = 2000
to compute µt and σt, and Nm = 3000 to compute µm and
σm. For the DAE-PLDA system, we use Nt = 1000, Nm =
500. These optimal values were found by performing a grid
search on the development set.

4. RESULTS

The results obtained from the development set of the different
systems under study are shown in Table 2. As we can see,
score normalization is extremely beneficial, particularly for
the DAE system. In the last two rows, we can see that com-
bining the DAE with LDA gives reasonable results but does
not provide any further improvement. We can also see that
the discriminative DAE does not improve the results over the
simple DAE.

Table 2. Performance on development set
System Top-S EER Top-1 EER

[%] [%]
Baseline 2.01 12.26
LDA + PLDA 1.82 6.96
LDA + PLDA + S-Norm 1.26 6.72
DAE + PLDA 1.73 7.22
DAE + PLDA + S-Norm 1.25 6.52

disc. DAE + PLDA + S-Norm 1.38 6.80

DAE + LDA + PLDA + S-Norm 1.33 6.64
LDA + DAE + PLDA + S-Norm 1.15 6.78

To score the evaluation set, we pooled together the black-
list training and development sets and used this combined set
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instead of the blacklist training set. In this way, speaker mod-
els are computed using the 4 utterances available between
training and development sets. For the DAE system, as an ex-
tra regularization step, we trained an ensemble of 10 models
with different initializations. Apart from this modifications,
the rest of parameters are kept identical.

Results are shown in Table 3. Again, the DAE system
achieves lower error rates than the LDA-PLDA system. It is
worth noting that the system exhibits no overfitting. In fact,
results on the evaluation set are appreciably better than on the
development set, as expected in case of no overfitting, since
now the speaker models are computed using 4 utterances in-
stead of 3.

Finally, we experimented with score-level fusion of both
system using logistic regression, but we could not get any sig-
nificant improvement. Our primary submission to the chal-
lenge consisted on the DAE-PLDA system as primary sub-
mission and the LDA-PLDA system as contrastive submis-
sion.

Table 3. Performance on evaluation set
System Top-S EER Top-1 EER

[%] [%]
Baseline 6.24 11.24
LDA + PLDA 4.63 6.81
LDA + PLDA + S-Norm 4.42 6.56
DAE + PLDA 4.60 6.75
DAE + PLDA + S-Norm 4.33 6.11

5. CONCLUSIONS

We have tested a denoising autoencoder architecture to trans-
form ivectors for speaker recognition. Results on the MCE
2018 challenge show that this simple architecture shows
promise and can improve results with no appreciable overfit-
ting. This challenge proposes an interesting open-set speaker
identification task which, to date, has received little atten-
tion. It has, however, some limitations: not having access
to raw-audio makes it difficult to perform effective data aug-
mentation, and a modest (around 4) number of utterances
per speaker. We hypothesize that having access to a larger
number of utterances per speaker and making use of data
augmentation could be beneficial to neural network-based
approaches like the proposed DAE. Future work will try to
validate this hypothesis by applying the proposed approach
on different, larger tasks. Using x-vectors or other speaker
embeddings as input, instead of ivectors, is another possible
extension of the present work.
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