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ABSTRACT
In this work, we assess the impact of vocal effort on discrimina-
tion and calibration performance of a state-of-the-art speaker recog-
nition system. We analyze three levels of vocal effort (low, nor-
mal, and high) from the SRI-FRTIV corpus. We use a deep neural
network (DNN) speaker embeddings system with probabilistic lin-
ear discriminant analysis (PLDA) and find that vocal effort variation
significantly degrades system performance. We apply both mixture
PLDA (mix-PLDA) and trial-based calibration with condition PLDA
similarity (TBC-CPLDA) to improve system robustness. Our pro-
posed approaches resulted in 18% and 33% relative improvement in
discrimination and calibration performance respectively on the SRI-
FRTIV corpus.

Index Terms— Vocal effort, speaker embeddings, calibration,
speaker recognition, condition PLDA

1. INTRODUCTION

Variability in the acoustic signal is a persistent challenge for speaker
recognition systems operating under real-world conditions. Such
variability is caused by either intrinsic or extrinsic factors. Intrin-
sic factors are associated with the speaker rather than the recording
environment. These factors include changes in vocal effort, speaking
style [1], non-speech sounds [2, 3, 4], emotions, language [5], aging,
etc. across recordings of the same speaker. Extrinsic factors are as-
sociated with the differences in the recording environments between
recordings. These factors include changes in background noise, mi-
crophone, room acoustics, distance from the microphone [6], trans-
mission channel, codec [7], etc. Intrinsic factors are also known
as speaker-dependent factors, whereas extrinsic factors are called
speaker-independent factors [8].

During recent decades, US government evaluations and pro-
grams (such as the NIST Speaker Recognition Evaluations (SRE),
the IARPA BEST program, and the DARPA RATS program) have
motivated particular research directions in the speaker recognition
community. Those research programs have primarily focused on the
problem of extrinsic variability, including channel effects, transmis-
sion noise, and environmental noise. Intrinsic variability, in contrast,
has received sparse research exposure. Yet, intrinsic variability is a
key factor for unconstrained applications, such as forensic speaker
recognition. This work is focused specifically on vocal effort varia-
tions, which is one class of intrinsic variability.

Vocal effort has been shown to impact the performance of
speaker recognition systems [9]. In the past, a number of studies
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focused on different levels of vocal effort, such as whisper [10],
shouts [11], and screams [4]. The impact of Lombard speech on
the performance of speaker verification system was considered
in [12, 13].

The main contributions of this work are as follows. First, we use
a state-of-the-art DNN speaker embeddings based speaker recogni-
tion system over classical GMM-UBM or i-vector based systems.
Second, rather than focusing on just one type of vocal effort level
such as whisper or shouts, we develop our mitigation approaches for
a range of vocal efforts from low to high. Third, we use a relatively
large number of speakers with sufficient audio data per speaker to
get significant results. Also, to the best of our knowledge, this study
is the first to consider calibration of speaker recognition system for
a range of vocal efforts.

In this study, we first assess the impact of vocal effort on dis-
crimination and calibration performance of a DNN speaker embed-
dings speaker recognition system. We then apply mixture PLDA
(mix-PLDA) using meta information and the recently proposed trial-
based calibration with condition PLDA similarity (TBC-CPLDA) to
mitigate the impact of vocal effort. We used SRI-FRTIV corpora for
all the experiments.

2. CORPUS

The SRI-FRTIV (Five-way Recorded Toastmaster Intrinsic Varia-
tion)1 corpus was collected under controlled conditions for intrin-
sic variability analysis at SRI International [1]. This corpus has
34 native speakers of North American English. Each speaker was
recorded for eight different conditions (labeled conditions 1–8 in Ta-
ble 1), which are combinations of vocal effort and speaking styles.
During data collection, the unnatural combinations of speaking style
and vocal effort (labeled NA) were excluded (e.g., oration at low
vocal effort). Each speaker was recorded during two sessions, sepa-
rated by an average of two to three weeks.

Table 1. Different conditions (1–8) in the SRI-FRTIV corpus, where
NA indicates an unnatural condition.

Normal Effort Low Effort High Effort
Interview 1 2 NA

Conversation 3 4 NA
Reading 5 6 7
Oration NA NA 8

Some unique aspects of the SRI-FRTIV corpus include: (i) the
use of furtive or very low vocal effort speech as opposed to whis-
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pered speech, (ii) high vocal effort being associated with projection
over a distance rather than over noise (as in the Lombard effect),
and (iii) the subject’s position relative to the microphone being held
constant across all conditions.

In this study, for the vocal-effort experiments, we use normal
effort (C5), low effort (C6), and high effort (C7) conditions with
a reading speaking style. For a controlled analysis of vocal effort
variations, we keep all the parameters constants which are known
to impact the performance of a speaker recognition system. We use
read speaking style, fixed duration of speech (15 sec.) and clean
speech. The 15 sec. audio files were chunked based on the output of
a speech activity detection system.

For this study, we split the SRI-FRTIV data by speaker into eval-
uation and development or calibration sets. Each set contains record-
ings from 17 speakers.

3. SPEAKER RECOGNITION SYSTEM

In this section, we detail our speaker recognition system used in this
work. We use a state-of-the-art DNN speaker embeddings-based
speaker recognition system. The main components of our system
include speech activity detection (SAD), a DNN-based embedding
extractor, a probabilistic linear discriminant analysis (PLDA) classi-
fier, and a score-calibration module.

3.1. Speech Activity Detection

In our previous work [14], we investigated the impact of speech ac-
tivity detection (SAD) on the performance of speaker embeddings-
based speaker recognition systems. It was shown that a low SAD
threshold during training tended to benefit the embeddings extractor,
while maintaining a strict threshold during evaluation was necessary.
Here, our SAD is DNN-based system with two hidden layers con-
taining 500 and 100 nodes, respectively. The SAD DNN is trained
using 20-dimensional mel-frequency cepstral coefficients (MFCC)
features, stacked with 31 frames. Before training the SAD DNN,
the features are mean and variance normalized over a 201-frame
window. The threshold for selecting the speech versus non-speech
frames is 0.5 for evaluation and -1.5 for DNN training. The SAD
model is trained on clean telephone and microphone data from the
Mixer datasets released under the NIST SREs.

3.2. Speaker Embedding Extractor

The architecture of our speaker embeddings extractor DNN follows
the Kaldi recipe [15, 16]. This feed-forward DNN is trained to dis-
criminate between speakers. By using a statistics pooling layer, the
DNN maps a variable-length utterance to a fixed-dimensional em-
bedding. The embeddings network has five frame-level hidden lay-
ers with rectified linear unit (ReLU) activation and batch normal-
ization. The first three layers incrementally add time context with
stacking of [-2, -1, 0, 1, 2], [-2, 0, 2], and [-3, 0, 3] instances of the
input feature frame. Means and standard deviations of the frame-per-
audio segments are stacked using a statistic pooling layer. The final
two hidden layers of 512 nodes operate at the segment level prior to
the log-soft-max output layer. A ReLU activation function and batch
normalization prior to a layer’s output is applied to all layers except
the output layer. Speaker embeddings can be extracted either from
first or second segment-level hidden layer, each being 512 nodes. In
this work, we use first segment-level hidden layer for extraction of
the speaker embeddings [15, 17].

For the training of the embedding extractor, we followed the
recipe in [14] for the raw+CNlowRM system. We used raw PRISM
data, along with four types of degradation to train the embedding
extractor.

3.3. Probabilistic Linear Discriminant Analysis (PLDA) Classi-
fier

A PLDA model learns to separate within-class and across-class vari-
ability from a large, labeled training set using expectation maxi-
mization (EM) [18]. We use gender-independent PLDA for all our
experiments described herein. Before training the PLDA classifier,
the dimensions of the embeddings are reduced to 200 using linear
discriminant analysis (LDA), followed by length normalization and
mean centering [19]. Finally, these normalized speaker embeddings
are used by the PLDA classifier to compute a similarity score be-
tween speaker embeddings. The full PRISM training lists (including
original degradations) with additional transcoded data are used for
training the PLDA model [20].

3.4. Score Calibration

The output scores of speaker recognition systems are not directly
interpretable as stand-alone values. To use the speaker recognition
system output scores, a calibration step is performed. The calibra-
tion step converts the system scores into meaningful output, known
as log-likelihood ratios (LLRs) [21]. The LLRs have a clear prob-
abilistic interpretation and can be either used directly in some ap-
plications, like forensic voice comparison, or converted to binary
decisions by applying a score threshold for other applications, such
as user authentication. We use a linear calibration transformation in
which raw scores s are transformed into calibrated scores sc, given
scaling and offset parameters α and β:

sc = αs+ β (1)

where α and β are obtained by logistic regression optimization on
development data.

We use the equal error rate (EER) percentage and a minimum
decision cost function (minDCF) from NIST SRE 2010 evaluation
with a probability of a target trial (Ptarget) equal to 0.01 and a cost
of log-likelihood ratio Cllr to measure the performance of the sys-
tem. Cllr measures discrimination and calibration over all possible
operating points.

We use both the EER and minDCF to help draw confident con-
clusions when limited errors at a given operating point resulted in a
wide confidence margin around one of the metrics. This may occur
when too few errors or unique speakers are used in the calculation of
the metric.

4. IMPACT OF VOCAL EFFORT MISMATCH

In this section, we assess the sensitivity of speaker recognition on
discrimination and calibration performance to the different levels of
vocal effort on SRI-FRTIV.

4.1. Discrimination Performance

For impact assessment of vocal effort, we selected three vocal effort
modes (C5–C7) for the read condition from SRI- FRTIV. Audio seg-
ments were chunked into 15 seconds of speech based on decisions
from speech activity detection. We enrolled speakers using normal
vocal effort data from session 1, and verification was done using
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different vocal efforts from session 2. We generated trials by pool-
ing trials from all the microphones, including the cross-mic trials.
Speakers models were enrolled using a single enrollment segment of
15 second, however, we enrolled each unique speaker multiple time
using all available segments from session 1 to produce an extended
set of trials.

Table 2. Impact of vocal effort on discrimination performance for
speaker recognition on the SRI-FRTIV corpus.

Enroll-Test Tgt/Imp EER (%) minDCF
Normal-Low 13.8k/227.6k 4.08 0.259

Normal-Normal 29.9k/487.7k 0.61 0.042
Normal-High 31.8k/517.5k 1.96 0.098
Normal-All 75.6k/123.2k 2.03 0.11

Results from the experiments are shown in Table 2. We observe
that test speech with low vocal effort causes a significant degra-
dation, more than twice that of normal vocal effort. Even though
speaker embeddings generalize well across unseen conditions [14,
16], results in Table 2 show the pooled test condition (Normal-All)
is closely tied to the performance of the Normal-High subset, rather
than being similar to the average across conditions. This indicates
that calibration across conditions is particularly poor for the speaker
embedding system when coping with variation in vocal effort from
speakers.

4.2. Calibration Performance

We assessed the impact of different vocal efforts on calibration per-
formance for speaker recognition. For this experiment, our evalu-
ation and calibration sets were homogeneous (i.e., just one type of
vocal effort available in the evaluation and calibration sets). Bench-
marking such that there is homogeneity across the calibration and
evaluation sets provides a fundamental reference point to assess the
impact of using a global calibration model or a model unaware of the
specific conditions expected during system use.

Table 3. Impact of vocal effort in terms of Cllr .

Calibration Set Evaluation Set
Low Normal High

Low 0.269 0.146 0.130
Normal 0.844 0.026 0.031

High 0.693 0.036 0.032

The results for vocal effort impact assessment are summarized
in Table 3. A major finding is that low vocal effort poses a significant
problem as opposed to normal and hard vocal efforts. For this set,
also observe that the normal and high vocal effort are very close to
each other in terms of calibration performance.

5. COMPENSATION OF VOCAL EFFORT MISMATCH

In this section, we describe the approaches used to mitigate the ef-
fects of vocal effort in our speaker recognition system. We first de-
tail mixture PLDA, and then trial-based calibration with condition
PLDA similarity is presented.

5.1. Mixture PLDA

We developed a mitigation approach for vocal effort that involved
a meta extractor to predict the class of vocal effort (low, normal, or
high) and used this information in a mixture PLDA (mix-PLDA)
model, which has a PLDA model for each class, and weights each
appropriately in the evaluation of a trial. These class-dependent
PLDA models are trained simultaneously using an expectation-
maximization (EM) algorithm. During training phase, an embed-
ding is assigned to a particular PLDA model based on the posterior
probability of vocal effort level. This approach was intially proposed
for SNR-dependent PLDA in [22].

The mixture of PLDA models each correspond to a particular
vocal effort level ranging from low to high. As a result, the speaker
recognition system is expected to handle a range of vocal effort lev-
els. We train our meta extractor on calibration set of SRI-FRTIV.
During the evaluation phase for a speaker embedding, the marginal
likelihoods from different PLDA models (specific to each vocal ef-
fort in training) are linearly combined based on the posterior proba-
bilities of the test utterance and the enrollment utterance originating
from each of the vocal effort levels. Final verification scores are the
ratio of the marginal likelihoods.

Table 4. Impact of vocal effort on discrimination performance for
speaker recognition on the SRI-FRTIV corpus.

Regular-PLDA mix-PLDA
Enroll-Test EER (%) minDCF EER (%) minDCF
Normal-Low 4.08 0.259 3.47 0.210

Normal-Normal 0.61 0.042 0.61 0.042
Normal-High 1.96 0.098 1.62 0.085
Normal-All 2.03 0.11 1.66 0.093

Table 4 indicates the performance of mix-PLDA that was trained
to be aware of the three vocal effort levels. It can be observed that
mix-PLDA provided similar performance to Regular-PLDA when
the test conditions were constrained to normal vocal effort level. It
is when a variety of vocal efforts are evaluated (Normal-All), that
the benefit of mix-PLDA becomes clear, resulting in more than 18%
and 15% relative gain in EER and minDCF over Regular-PLDA,
respectively.

5.2. Trial-Based Calibration

A novel approach for calibration, called trial-based calibration
(TBC), was first proposed in [23]. This approach is similar to the
way in which a forensic expert calibrates each trial individually.
Trial-based calibration trains a separate calibration model for each
test trial using data that is dynamically selects from a candidate
training set to closely match the conditions of the trial. The model
trained for each trial is thus targeted toward the characteristics of
the test trial and is not contaminated by data that is markedly dif-
ferent from the trial conditions. A dynamic calibration model is
trained with the scores of these selected trials using linear logistic
regression, as is done in the case of global calibration.

A crucial factor in the TBC approach is how to determine which
data, if any, is sufficiently similar to the conditions of the trial to gen-
erate an appropriate calibration model. This selection is done based
on a similarity metric between the trial samples and the candidate
calibration samples. In the first formulation of TBC, similarity was
determined using the universal audio characterization (UAC) vector
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approach [24], developed under the IARPA BEST program. This
approach uses i-vectors from a speaker recognition system to train a
Gaussian back-end to detect all known relevant conditions affecting
SID, such as channels, reverberation times, SNRs, codec, noise type,
etc. The collected scores for all the conditions form the UAC vector,
which represents the meaningful condition variability of the file in a
single array. When compared with UAC vectors from the candidate
calibration set, the most relevant calibration data could be located.

5.2.1. Condition PLDA Similarity

Our more recent work has moved away from this approach [25], in
which conditions were treated rather independently, and has instead
moved toward using a common subspace that is rich in condition
variability. SRI developed a new approach, condition probabilis-
tic linear discriminative analysis (CPLDA), which more accurately
compares conditions across files and improves the ability of TBC
to generalize to unseen conditions. The CPLDA similarity used in
this work is given by the score produced by a PLDA model trained
to estimate the log-likelihood ratio of the sample’s speaker embed-
ding, given the hypothesis that they come from the same condition
versus the hypothesis that they come from different conditions. The
CPLDA model is trained with data from many different speakers
under many different conditions, while modeling the condition vari-
ation instead of speaker variation as is done in traditional PLDA for
SID [25]. For this work, our CPLDA training set consists of our
PLDA list and calibration list of SRI-FRTIV with conditions labels
for channel, language, vocal effort and gender. The label for the con-
dition of an audio file is formed through the combination of these
three categories.

5.2.2. Regularization of Calibration Model

In this work, we also consider a regularized version of linear logistic
regression, in which a term is added to the objective function to pe-
nalize the distance from the estimated parameters to a default set of
parameters. This was first proposed in [25] as well.

We use a version that we regularize toward the default parameter
values. That is, we maximize the following objective function,

LR(α, β) = L(α, β) + λL0[
(α− α0)

2

α2
0

+
(β − β0)

2

β2
0

] (2)

where L is the standard logistic regression objective function, and
parameters α0 and β0 are learned from the pooled calibration data as
would normally occur when training a global calibration model. The
value of λ is chosen empirically to optimize calibration performance
(0.05 was used in this work).

Table 5. Effect of regularization on vocal effort.

Enroll-Test Regularization Cllr

TBC-CPLDA Normal-All No 0.455
TBC-CPLDA Normal-All Yes, α=0.05, β=0.05 0.130

Table 5 shows a comparison of results when using no regular-
ization and using regularization on the trial-based calibration with
condition PLDA (TBC-CPLDA) method. We observe that regular-
ization offers a solid calibration performance improvement for vo-
cal effort. We found that regularization parameters, alpha and beta,
yielded the best results with a value equal to 0.05.

Typically, data availability is lacking for calibrating under con-
ditions with intrinsic variability. Therefore, the TBC system can be
tailored for the lack of data by setting the user-defined parameter
for maximum number of target trials (MaxTgt) to a relatively small
value. The regularization parameters with value equal to 0.05 allow
for a MaxTgt in the range of 30 to 100 for the SRI-FRTIV dataset.
For interested readers, additional details on the selection algorithm
can be found in Section III.B of [25].

5.2.3. TBC-CPLDA Results

We present the results for the global calibration, and trial-based cal-
ibration with condition PLDA (TBC-CPLDA) in Table 6 and regu-
larization. In the case of vocal effort, TBC-CPLDA is very effective.

Table 6. Mitigation of calibration of vocal effort.
Calibration Enroll-Test Cllr

Global Calibration Normal-All 0.183
Trial-Based Calibration with CPLDA Normal-All 0.130

We observed 29% relative improvement in Cllr with TBC-CPLDA
compared to global calibration. The TBC-CPLDA approach outper-
forms the global calibration because of its ability to select the most
relevant data for calibration using condition PLDA. These results
indicate the degree of impact that varying vocal effort levels can
have on speaker recognition calibration performance and the need
to appropriately counteract such variation through robust calibration
methods such as TBC-CPLDA.

6. CONCLUSIONS

This study demonstrated that variations in vocal effort level signifi-
cantly degrade discrimination and calibration performance of a state-
of-the-art speaker recognition system. Low vocal effort poses a sig-
nificant challenge compared to high vocal effort. We used mixture
PLDA to improve discrimination performance under varying lev-
els of vocal effort. This approach leveraged an automatic estimate
of vocal effort level to appropriately weight a mixture of PLDA
models trained for each vocal effort condition. For robust calibra-
tion of a speaker verification system under different vocal efforts,
we used trial-based calibration (TBC) with condition-PLDA. Fu-
ture work will include applying the proposed approaches to a large
dataset and to a wider scale of vocal effort variations, such as from
whispering to shouted speech.
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