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ABSTRACT

Dialect Identification (DID) refers to the process of identifying
different dialects within the same language class. Compared with
more general language identification (LID), DID is a more challeng-
ing task because of the substantial similarity between dialects. For
an i-vector based LID/DID, prior studies have shown advancements
with deep neural networks (DNNs) over Gaussian Mixture Models
(GMMs) in acoustic modeling. In this study, a novel i-vector rep-
resentation which is based on unsupervised bottleneck features is
examined as the feature to identify dialects from Arabic broadcast
speech. To utilize the unlabeled training data, semi-supervised learn-
ing with generative adversarial networks (GANs) are incorporated
in the back-end classifier development. Experiments with the pro-
posed method in the third release version of the Multi-Genre Broad-
cast (MGB-3) Challenge yields the best single system performance
among all submitted systems. An overall classification accuracy
of 73.8% achieves a +28.8% relative improvement over the MGB-
3 baseline with an accuracy of 57.3%, which is the state-of-the-art
performance in this DID task. The fused system further achieves an
improvement of +39.4% in accuracy.

Index Terms— Semi-supervised learning, language identifica-
tion, generative adversarial networks, i-vector, Arabic Dialect iden-
tification.

1. INTRODUCTION

As a special case of Language Identification (LID), Dialect Iden-
tification (DID) requires us to identify different dialects within the
same language class. Because of the remarkable similarity between
dialects, DID is considered to be a more challenging problem than
general LID. In [1], 100% accuracy on an Arabic/English language
identification task is achieved using an i-vector framework [2], while
only a 59.2% accuracy is reported in Arabic dialect identification
(ADI) task from the same system. This indicates that DID remains
as a difficult problem even when recent advancements have been re-
ported from current LID systems [3, 4, 5, 6].

Modern LID systems can be categorized into two general
classes, (i.e., text/lexical feature based LID, and acoustic feature
based LID [1, 7, 8]). Acoustic based LID has drawn more attention
with its flexibility, relatively better performance and less demanding
annotations. As a contrast, text/lexical based LID systems often rely
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on parallel transcriptions, which are difficult to satisfy in practical
LID/DID applications.

As one competitive representative of the acoustic based systems,
the i-vector framework provides a way to map an arbitrary length ut-
terance into a fixed length vector, where information (e.g., channel,
speaker, language etc) from the utterance is encoded [2, 9]. Similar
to that for speaker recognition, replacing Gaussian Mixture mod-
els (GMMs) with supervised deep neural networks in the acoustic
modeling has been shown to be effective in LID [5]. Richardson et
al. found that bottleneck features (BNF) from an ASR DNN acous-
tic model combined with GMM posteriors achieved the best perfor-
mance in the LRE11 post-evaluations [5]. The result confirms the
observation that the advantages of ASR DNN posteriors have been
largely constrained to English language speech where a large amount
of text information can be utilized [10]. To relax the limitation of
unsatisfying text for non-English speech, Zhang et al. [11, 12] pro-
posed to perform acoustic partitioning with GMMs and assign pho-
netic labels according to the GMM posteriors. With this operation,
an unsupervised “phonetic alignment” is incorporated into the BNF
deep neural networks, with an impressive gain in performance, for
which an unsupervised BNF is obtained for the DID task.

For i-vector based LID/DID, a secondary classifier is required.
Gaussian back-end (GB) and Support Vector Machine (SVM) so-
lutions are reported to have state-of-the-art performance in several
different tasks [3, 5, 13]. Deep neural network based classifiers are
also effective [14]. In the case of unlabeled training/development
data, semi-supervised learning with Ladder Networks has been suc-
cessfully applied to language recognition [15]. In our study, we de-
velop a classifier based on a semi-supervised generative adversarial
networks (GANs) framework, which takes advantage of unlabeled
training/development data.

In addition to the advancements based on the i-vector model-
ing, studies in DNN based embedding/metric learning from speech
or end-to-end systems have also draw increasing attentions. State-
of-the-art performance has been reported in speaker recognition, lan-
guage recognition and even DID tasks [16, 17, 18, 19, 20]. However,
those methods are generally considered as (labeled) data demanding,
which is difficult to be satisfied for low resource language cases.

In this paper, we present a systematic study for DID task with
unsupervised/semi-supervised learning concepts in both front-end i-
vector modeling and back-end classifier sides. The primary contri-
bution of this study is integrating recent advancements in front-end
features and back-end classifiers for a challenging DID task. An
overview of our recent proposed unsupervised bottleneck features
(UBNF) for i-vector extraction is presented in Sec. 2. A new semi-
supervised learning framework with GANs for identifying Arabic
dialects is detailed in Sec. 3 [21]. Experiments with the proposed
methods are examined using the MGB-3 Arabic dialect identifica-
tion corpus in Sec. 4. Finally, we conclude our work in Sec. 5.
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2. UBNF FOR I-VECTOR MODELING

This section describes i-vector modeling with our UBNF features.
The motivation of replacing traditional MFCC features with the al-
ternative BNF is to employ the impressive phonetic discriminative
ability with DNNs [1]. In the case of LID/DID, training a super-
vised ASR DNN acoustic model for all languages is difficult (e.g.,
absence of sufficient parallel text transcriptions). To overcome this,
a novel unsupervised version of BNF is introduced in this study.

2.1. UBNF paradigm

The concept of UBNF is similar to traditional bottleneck features,
but without the need for text information. In the UBNF paradigm, a
universal background model (UBM) is trained to align acoustic fea-
tures with mixture indexes, which are assumed to represent phonetic-
like information. As shown in Fig.1, a UBM is trained using MFCCs
with Shifted Delta cepstral (SDC) features in the training set. Similar
to [11], the universal phonetic space is partitioned into N mixtures.
Subsequently, frame level phonetic labels are estimated according
to highest GMM posteriors. With the estimated phonetic labels, a
deep bottleneck network is trained on the filter-bank features. The
DNN architecture is illustrated in Fig.1, a 40-D normalized activa-
tion vector is extracted from the bottleneck layer as the replacement
for MFCC-SDC features in the conventional GMM/i-vector frame-
work [2, 9].

UBM Posterior label 
estimation

11 frame concatenated 
feature (440D)

Output layer (N D)

Bottleneck feature 
based on unsupervised 
phonetic alignment

Proposed feature
(40 D)

1

2

3
N

4
...

Acoustic feature 
extraction 

Frame 1: label 1
Frame 2: label 2
Frame 3: label 4

Frame 11: label 3

Frame N: label N

...
...

Hidden layer (1024 D)

Hidden layer (1024 D)

Hidden layer (1024 D)

...

MFCCs+SDC 
(56 D)

 F
ilt

e
r 

b
a

n
k 

fe
a

tu
re

 (
4

0
 D

)

Fig. 1. The UBNF feature extraction diagram. Sigmoid non-
linearity is used with softmax normalization for the output layer of
DNN.

2.2. i-vector modeling with UBNF

To estimate the i-vector for a given speech utterance, the Baum-
Welch statistics are needed and obtained by:

Nk =
∑
t

p(k|xt)

Fk =
∑
t

p(k|xt)xt,
(1)

where xt is t-th frame of the utterance, p(k|xt) corresponds to
the posterior probability of Gaussian mixture k generating the vector
xt. Here, xt is the proposed UBNF that goes through the standard
i-vector modeling process, which includes UBM training, UBM pos-
terior calculation, Baum-Welch statistics extraction, total variability

matrix training etc. The generative model for the i-vector can be
expressed as:

M = m+ Tx, x ∼ N(0, I) (2)

where M is a supervector constructed by appending together the
first order statistics for each mixture component k, m is the univer-
sal supervector usually concatenated from UBM means, T is a row
rank total variability matrix derived from zero and first-order Baum-
Welch statistics from Equ.(1), x is the i-vector which retains most of
the high-level information of the utterance. In this study, i-vector is
the feature for DID back-end classifier development.
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Fig. 2. A conceptual semi-supervised learning framework with
GANs. The “feature matching” trick is also employed to construct
the generator loss, as proposed in [22].

3. SEMI-SUPERVISED LEARNING WITH GANS

We incorporate the concept of semi-supervised adversarial training
for dialect identification, given the unlabeled data for the MGB-3
ADI challenge.

3.1. Semi-supervised learning with Generative Adversarial Net-
works (GANs)

In the original GANs design, there is a generative network G(z; θG)
that produces samples from noise to fool a discriminator network
D(x), where the discriminator tries to identify the generated sam-
ples. By jointly optimize both G and D, a powerful unsupervised
generative model is learned that can produce samples close to the
real data [21].

In this study, the GANs discriminator network is not simply for
detecting whether the sample is real or “generated”. We wish to
ensure that the discriminator network is also a classifier that dis-
tinguishes features from different dialects, like a multi-task within
GANs framework [23, 22]. To do so, we add the samples from the
generator G to the real K classes data set, labeling them with a new
“generated” class y = K + 1, so that the classifier is expanded to
K +1 classes. The loss function for training our classifier becomes:

L =− Ex,y∼pd(x,y)[log pm(y|x)]
− Ex∼G[log pm(y = K + 1|x)],

(3)

where x is the i-vector, y is the corresponding label, pd(x, y) is the
real data distribution, and pm(x, y) is the distribution modeled by
the discriminator. We formulate two losses from the cross-entropy
loss of the classifier:

Lsup = −Ex,y∼pd(x,y)[log pm(y|x, y < K + 1)], (4)

Lunsup =− {Ex∼pd(x) log[1− pm(y = K + 1|x)
+ Ex∼G log[pm(y = K + 1|x)]},

(5)
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substituting D(x) = 1− pm(y = K + 1|x) into Equ.(5), we reach
Equ.(6) which is a standard GAN game-value.

Lunsup = −{Ex∼pd(x) logD(x) + Ex∼G log(1−D(x)}, (6)

Thus, the discriminator D is optimized with all labeled data using
the supervised loss Lsup; at the same time, the discriminator also
maximizes the probability of the real data toK real data classes with
the unsupervised GANs objective Lunsup. In this way, unlabeled
data is utilized with a semi-supervised framework. A conceptual
semi-supervised learning framework with GANs is depicted as Fig.
2.

4. EXPERIMENTS

In this section, we first introduce MGB-3 ADI Challenge corpus, and
then briefly describe the baseline systems. Finally, the experimental
setup and results are detailed and analyzed here, showing advance-
ments of our proposed method for i-vector based ADI task.

4.1. MGB-3 Arabic Dialect Identification Corpus

The ADI training dataset was collected from the Broadcast News
domain from 5 Arabic dialects inclusing Egyptian (EGY), North
African or Maghrebi (NOR), Gulf or Arabian Peninsula (GLF), Lev-
antine (LAV), and Modern Standard Arabic (MSA). Data recordings
were digitized at 16Khz. The recordings were segmented into utter-
ances with random durations. The test and the development datasets
came from the same broadcast domain, but the recording setup was
different from the training data. Text information (transcription from
a ASR system [1, 24]) is also provided. Since our system is based
on acoustic features, we remove the text part to avoid redundancy.
The corpus statistics are listed in Table 1. It is noted that unlabeled
MBG-2 data is also provided for system development, which is use-
ful in UBM, T-matrix as well as semi-supervised GANs classifier
training.

Table 1. Statistics of MGB-3 ADI Corpus. Utt # stands for number
of utterances, Dur. stands for duration in hours.

Training Development Eval
Dialect Utt # Dur. Utt # Dur. Utt # Dur.
EGY 3093 12.4 298 2.0 302 2.0
GLF 2744 10.0 264 2.0 250 2.1
LAV 2851 10.3 330 2.0 334 2.0
MSA 2183 10.4 281 2.0 262 1.9
NOR 2954 10.5 351 2.0 344 2.1
Total 13825 53.6 1524 10.0 1492 10.1

4.2. ADI Baselines

Two ADI systems from the MGB-3 challenge organizers are pro-
vided as baselines. An additional one MFCC-SDC/i-vector + GB
system is also developed by here for cross-system comparisons.

4.2.1. MGB-3 baselines

One lexical and one BNF/i-vector system are provided by the ADI
challenge organizers [24]; both text and acoustic features are fol-
lowed by a multi-class SVM classifier to find the probabilities of
Arabic dialects. We refer to these systems as Ibs-t and IIbs-a, respec-
tively.

4.2.2. MFCC-SDC/i-vector + GB

The third baseline is a standard UBM/i-vector system, with 56-D
MFCC-SDC (7 static cepstra appended to 49 shifted delta cepstra),
energy based speech activity detection and a 1024-mixture UBM
(with both MGB-2 and MGB-3 training data). The dimension of
i-vector is 600, with a Gaussian back-end implemented to identify
each dialect. The system is labeled with IIIbs-gb.

4.3. Hyper-parameter setup for UBNF/i-vector+ GANs system

4.3.1. UBNF/i-vector

As illustrated in Fig.1, the same 56-D MFCC-SDC features with an
energy based SAD is provided for unsupervised acoustic partition-
ing; a 2048-mixture GMM is only trained using MGB-3 training
set. The dimension of output layer of the deep BNF network is also
2048. The network architecture is summarized as 440-1024-1024-
40-1024-2048, where the input layer is the concatenation of 11-
frame filter-bank features. 40-D BNF features extracted from MGB-
2 and MGB-3 training set are the input of standard GMM/i-vector
pipeline, and 600-D i-vector used for the final feature for back-end
classifiers.

4.3.2. Semi-supervised GANs

The Semi-supervised GANs architecture is shown in Table 2. The
generatorG is a feed-forward dense network with two hidden layers.
A Gaussian noise vector z is the input to G, and the output is the
“generated i-vector”. The discriminator D is also the supervised
classifier for ADI. It has three hidden layers, where 50% of each
hidden layer parameters is randomly dropped out to address over-
fitting problem [25].

In our submissions to MGB-3 ADI Challenge, duration infor-
mation is also appended to the 600-D i-vector space as auxiliary fea-
tures for classifier training. The intuition behind this operation is to
add uncertainty to the estimated i-vector before back-end modeling,
a performance gain is expected with this simple duration calibration
[3]. Our experiments on the MGB-3 ADI Dev set confirms a rel-
ative ∼3% accuracy improvement achieved for different front-end
features. Therefore, a 601-D i-vector+duration solution is used for
all our ADI systems.

Table 2. Semi-supervised GANs architecture for i-vector features.
Generator architecture Discriminator architecture

Input 2×hidden Output Input 3×(hidden & dropout) Output
100 500 601 601 1024 & 0.5 5

4.4. Performance on the MGB-3 ADI Dev set

Throughout the experiments on the ADI Dev and Eval sets, three
metrics (e.g., Accuracy (ACC), Recall (RCL), and Precision (PRC))
are used to report system performance (note: this is the same as
[1, 24]). The single system performance is presented in this sec-
tion. In addition to three baselines, the UBNF/i-vector + GB and
UBNF/i-vector + GANs proposed solutions are also reported in Ta-
ble 3. These two systems are noted as IVu-gb and IVu-gans, respec-
tively.

As shown in from Table 3, the baseline IIIbs-gb
1 with MFCC-

SDC/i-vector and a Gaussian back-end outperforms two MGB-

1Our MFCC-SDC/i-vector front-end feature outperforms IIbs-a with BNF
front-end because of MGB-2 data augmentation in the UBM training.
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Table 3. Dev results of 3 baseline and 2 proposed systems.
System ACC RCL PRC

Ibs-t 48.26% 50.33% 49.13%
IIbs-a 58.09% 61.37% 58.83%

IIIbs-gb 63.37% 63.82% 64.29%
IVu-gb 65.88% 66.49% 65.31%

IVu-gans 69.42% 69.83% 69.02%

3 ADI challenge baselines. Compared with other features, the
UBNF/i-vector generally has a better characterization for the ADI
task when we fix other conditions (i.e., the same Gaussian back-end
is applied on IIIbs-gb and IVu-gb). The GANs based semi-supervised
learning outperforms all the systems by a substantial margin, which
shows the advantages of our proposed method.

4.5. Performance on the MGB-3 ADI Eval set

4.5.1. Performance with only training set

We apply classifiers which are trained with only training data for
the Eval set. Table 4 lists performance of the 5 single systems. In
terms of ACC, overall performance is slightly lower than the Dev
set. This maybe attribute to relatively more short utterances in the
Eval set, which is also a motivation to perform duration calibration in
the i-vector space described above. The Eval set result does confirm
that the UBNF feature and Semi-supervised GANs classifier have
consistent advantages over traditional methods.

Table 4. Eval results of 3 baseline and 2 proposed systems.
System ACC RCL PRC

Ibs-t 47.64% 48.33% 47.23%
IIbs-a 57.33% 59.57% 58.83%

IIIbs-gb 63.23% 63.62% 63.91%
IVu-gb 65.45% 66.37% 66.89%

IVu-gans 69.16% 70.27% 69.76%

4.5.2. Data augmentation

Although the training, Dev and Eval sets are from the same broadcast
domain, there is still differences between training and the Dev/Eval
set. Here, we note that the Dev and Eval sets are more similar to each
other. So, introducing Dev set data for classifier training will benefit
more on Eval set. In this experiment, we randomly introduce 2/3’s of
the Dev data (around 1000 utterances, we leave the other 1/3 of Dev
data for score level fusion) to the training set. The performance after
Dev data augmentation is detailed in Table 5. We see a∼ 6% relative
improvement achieved by simple data augmentation, which shows
the importance of in-domain data for the ADI task. An impressive
accuracy of 73.86% is achieved with only a single system IVu-gans,
which outperforms most of the reported fusion systems to the MGB-
3 ADI Challenge [24, 26].

4.5.3. System fusion

In order to predict final scores combining our multiple single sys-
tems. We build a fused model by training a logistic regression
model for fusion. Let x = {x1, x2, ..., xn} be the score features by
concatenating each single system output. In the logistic regression
model, the target binary variable y is a Bernoulli random variable of
which the probability of occurrence is dependent on the prediction

Table 5. Eval results of 3 baseline and 2 proposed systems–data
augmented.

System ACC RCL PRC
Ibs-t 52.61% 53.63% 52.23%
IIbs-a 59.78% 62.07% 60.73%

IIIbs-gb 65.81% 66.62% 66.91%
IVu-gb 69.64% 70.12% 69.89%

IVu-gans 73.86% 74.67% 73.52%

given in Equation 7. Regression coefficients ω are estimated using
the maximum likelihood estimation. Scores from each single system
are combined with the estimated coefficients to get the fusion score
ŷ.

p(y = 1|x,ω) =
1

1 + exp (−ωTx)
(7)

ŷ = ωTx (8)

The system fusion together with the latest updates on this task is re-
ported in Table 6. Among all results, the “UBNF/i-vector+GANs”
single system achieves slightly better results compared with cur-
rent state-of-the-art single system solution [20], which again shows
the advancement of UBNF feature for capturing accurate acoustic
unit and semi-supervised GANs based classifier for utilizing unla-
beled data. Finally, our fused system gives 79.86% accuracy on ADI
task with a relative improvement over the MGB-3 ADI baseline by
+39.4%. The overall performance is 1.5% worse than the recent
mega fusion system [20], where more systems are utilized in [20].

Table 6. Comparison with the recent results on MGB-3 ADI task.
System ACC RCL PRC

Shon et.al (fusion) [20] 81.36 % / /
Our system fusion 79.86% 80.27% 79.87%

Shon et.al (fusion) [27] 75.0% 75.1% 75.5%
IVa-gans-single 73.86% 74.67% 73.52%
Shon et.al [20] 73.39 % / /

5. CONCLUSIONS

This study described the development of a UBNF i-vector system
and a semi-supervised GANs classifier and demonstrated substan-
tial performance gains when the system is applied to the MGB-3
ADI Challenge. The main focus of this study is to develop a sin-
gle system which can incorporate both discriminative and generative
abilities from deep neural networks. GANs based semi-supervised
learning has been employed as a back-end classifier for a DID task.
The “UBNF/i-vector+GANs” single system improves performance
over the MGB-3 ADI baseline with a relative +28.8% accuracy gain,
which is state-of-the-art performance reported. Further more, system
fusion further boosts the performance to a ∼ 80% for ADI task.

Also, we believe this newly proposed semi-supervised learning
framework is promising for different tasks. For example, it can be
applied to the NIST 2015 LRE i-vector Machine Learning Chal-
lenge, where unlabeled data is the main point to address; It can
be introduced to ASR acoustic modeling, where unsupervised do-
main adaptation (without transcripts) can be implemented using this
framework. The study therefore highlights effective methods to ad-
vance i-vector based language/dialect identification, as well as fun-
damental observations for future speech and language technologies.
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