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ABSTRACT

Short utterance-based spoken language identification (LID)
is a challenging task due to the large variation of its feature
representation. Improving feature representation of short ut-
terances using a teacher-student method has been shown its
effectiveness for LID tasks. However, conventional teacher-
student methods use fixed pre-trained teacher models, that
makes it difficult to optimize student models. In this paper,
rather than using a fixed pre-trained teacher model, we in-
vestigate an interactive teacher-student learning by adjusting
the teacher model with reference to the performance of the
student model when the student model is stuck in a local min-
imum. Experiments on a 10-language LID task were carried
out to test the algorithm. Our results showed its effectiveness
of the proposed algorithm on short utterance LID tasks.

Index Terms— Interactive teacher-student learning,
teacher model optimization, knowledge distillation, short
utterance feature representation, spoken language identifica-
tion

1. INTRODUCTION

Spoken language identification (LID) techniques are im-
portant for multilingual applications, such as multilingual
automatic speech recognition and translation systems [1, 2].
LID techniques are typically used as a pre-processing stage
of multilingual speech applications. For real-time systems,
improving the performance of LID on short utterances is one
of the important tasks to reduce the real-time factor of the
whole system.

One of the state-of-the-art LID approaches is the i-vector-
based method. I-vector approaches have been demonstrated
their effectiveness and obtained state-of-the-art performance
in many LID tasks, especially on relatively longer utterance
tasks [3, 4, 5, 6, 7, 8]. In these approaches, compact utterance-
level i-vectors were extracted for language feature represen-
tation, then classifiers were used for classification. However,
the performance of the i-vector-based approaches often de-
grade dramatically on short utterance LID tasks, one of the
main reasons is that the i-vector representation for short utter-
ances has a large distribution variation.

Recently, end-to-end approaches with deep neural net-
works (DNN), recurrent neural networks (RNN), convolu-
tional neural networks (CNN) and attention-based neural net-
works have been investigated on LID tasks [9, 10, 11, 12, 13].
Compared with i-vector-based approaches, the end-to-end
approaches do not include many hand-crafted algorithmic
components which makes it easy to be optimized. For short
utterance LID tasks, the end-to-end approaches demonstrated
impressive performance [9, 11, 12]. For example, Lopez-
Moreno et al. proposed to use frame level-based DNN method
for LID tasks and outperformed the conventional i-vector sys-
tem on short duration utterance tasks, i.e. 3 seconds [9]. A
bidirectional long short term memory network (biLSTM) by
modelling temporal dependencies features using the past and
future frames was proposed for short durations (3 seconds)
[12]. Lozano-diez et al. used deep convolutional neural net-
works (DCNN) for short test durations (segments up to 3
seconds of speech) [11].

Similar to previous work [11], our previous experiments
also showed the effectiveness of the DCNN-based end-to-end
approach on short utterance LID tasks. However, the perfor-
mance of the DCNN model decreases rapidly as the input sen-
tence becomes shorter, even the model is completely trained
on short utterances [14]. The challenging for short utterance-
based LID is the large variations of feature representations.
To solve this problem, a feature representation knowledge dis-
tillation (FRKD) method was proposed to improve the feature
representation of short utterances[14]. The FRKD method
used a robust feature representation (obtained with a longer
utterance-based teacher model) to normalize the feature rep-
resentation of a short utterance-based student model. Such
normalization can make the student model to mimic the fea-
ture extraction behavior of the teacher model.

The FRKD method is motivated by the knowledge dis-
tillation method [15]. Knowledge distillation method has
been already successfully applied on many tasks, such as
speech recognition, image classification [15, 16]. Conven-
tional knowledge distillation methods use fixed pre-trained
models as teacher, the performance of the student model de-
pends on how well the student learns knowledge from the
teacher. Different from conventional knowledge distillation
method with same inputs for teacher and student models, in
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FRKD framework, the inputs of the student model are short
utterances while the inputs of the teacher model are the corre-
sponding longer utterances. Such difference makes it difficult
to optimize the student model with a fixed pre-trained teacher
model, and the student model is easy to be stuck in a local
minimum with a bad performance. In this work, rather than
using a fixed pre-trained teacher model, we investigate an
interactive teacher-student learning method to improve the
teacher-student learning by adjusting the teacher model with
reference to the performance of the student model. To the
best of our knowledge, the proposed approach has not yet
been studied by other researchers on LID tasks. We evaluated
the proposed method on a 10-language dataset. Our results
showed its effectiveness of the proposed algorithm on short
utterance LID tasks.

2. FEATURE REPRESENTATION KNOWLEDGE
DISTILLATION FRAMEWORK

In conventional knowledge distillation method, a high perfor-
mance teacher model is important, therefore, one big model
or ensemble multiple models are often used as the teacher
model [15, 17]. For LID tasks, compared with short utter-
ances, the performance of longer utterances is better. The
FRKD method was proposed by using the knowledge of a
long-utterance-based teacher model for short-utterance-based
student model training. In FRKD framework, the teacher’s
feature representation knowledge is used to regularize the stu-
dent network, that can help the student network capturing ro-
bust discriminative feature for short utterances.

Mathematically, given a short utterance xS , and its cor-
responding long utterance xT . y is the target label. Let ΘS

be parameter sets of hidden layers’ feature representation of
a student network, where ΘS = {WS ,bS}. Similarly, let
ΘT be hidden layers’ parameter sets of a teacher network.
Then, the student model can be optimized by minimizing the
following loss function:

L̂FRKD = (1− λ)LS(xS ,y) + λLkt(xT ,xS ,ΘT ,ΘS) (1)

where LS(xS ,y) is the loss function of the student model,
and Lkt is the regularization term. Then, for xS , the cross
entropy-based loss can be described as:

LS(xS ,y) = −
∑
i

yi log pi(xS), (2)

and, the regularization term can be defined as:

Lkt(xT ,xS ,ΘT ,ΘS) = ‖uT (xT ; ΘT )−uS(xS ; ΘS)‖1, (3)

where ‖ • ‖1 is the L1-norm to evaluate the representation
distance between the teacher and student models, and uT and
uS are the teacher and student deep nested functions up to
their respective selected layers. And λ is a weight coefficient.
In conventional teacher-student model, the parameters ΘT of
a teacher model is fixed after it was trained.
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Fig. 1. The proposed interactive teacher-student learning.

3. INTERACTIVE TEACHER-STUDENT LEARNING

Conventional knowledge distillation methods focus on train-
ing small/compact models for easy deployment by using fixed
pre-trained high-performance models. Because of the input
samples for teacher and student models are same, it is rea-
sonable for the student model to mimic the behavior of the
teacher model well. Considering the situation of the inputs of
teacher and student are different, e.g., the FRKD framework,
it will be a challenging task for the student model to learn
well because of the difference. As a consequence, the opti-
mization of the student model is easy to be stuck in a local
minimum with a bad performance. In this work, we inves-
tigate an interactive learning method to improve the conven-
tional teacher-student learning under the FRKD framework.
Our idea is based on this consideration: when a student model
is stuck in a local minimum, it is possible to drive the opti-
mization to escape from the local minimum with a parameter
adjustment on its teacher model. Fig. 1 illustrates the pro-
posed interactive learning framework. The proposed method
can be considered as a unified learning framework, that opti-
mizes both the teacher and student models by minimizing the
following loss function,

L̂ITSL = (1− α− β)LT (xT ,y) + αLS(xS ,y)

+βLkt(xT ,xS ,ΘT ,ΘS),
(4)

where LT (xT ,y) and LS(xS ,y) are losses of the teacher and
student models, respectively, andLkt is the hidden layer-based
feature representation regularization term.

We suppose that the effective learning between teacher
and student models is: students learn knowledge from teach-
ers, and teachers should adjust their model parameters to max-
imize the efficiency of the learning process of their students.
Under this assumption, the regularization term, i.e., Lkt is
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only used to regularize the feature representation of student
models. And teacher models are optimized by considering
the losses of their student model. Then, for student model
optimization, Eq. 4 can be redefined as,

L̂S = (1− λ)LS(xS ,y) + λLkt(xT ,xS ,ΘT ,ΘS), (5)

that is same to Eq. 1. The teacher model is optimized with
the following loss function,

L̂T = (1− γ − ξ)LT (xT ,y) + γLS(xS ,y)

+ξ‖uT (xT ; ΘT )− u0T (xT ; Θ0
T )‖1,

(6)

where LT (xT ,y) can be described as,

LT (xT ,y) = −
∑
i

yi log pi(xT ), (7)

and ‖uT (xT ; ΘT )−u0T (xT ; Θ0
T )‖1 is a constraint that keeps

the model is not optimized to be too far away to its initial
model, where uT (xT ; ΘT ) and u0T (xT ; Θ0

T ) are the repre-
sentations of updated and initial teacher models, respectively.
The parameter changes of the related hidden layers of teacher
model will affect the optimization of the student model, be-
cause of Lkt in Eq. 5. Therefore, LS(xS ,y) and ΘT are
correlated. In practice, we use a minibatch-based iteration
optimization algorithm, i.e., Algorithm 1, for teacher and stu-
dent models optimization.

Algorithm 1 Interactive teacher-student learning.
1: Teacher model training:
2: Given samples xT and labels y.
3: for number of training iterations do
4: Sample minibatch sample sets from training dataset.
5: Pre-train teacher model with LT (xT ,y).
6: end for
7: Student model training:
8: Given samples xS , xT and labels y.
9: for number of training iterations do

10: Sample minibatch sample sets from training dataset.
11: Train student model with L̂S.
12: end for
13: Interactive teacher-student training:
14: Given samples xS , xT and labels y.
15: for number of (training iterations × num minibatch) do
16: Sample one minibatch of sample sets.
17: Tune the teacher model with L̂T.
18: Tune the student model with L̂S.
19: end for

4. EXPERIMENTS

Experiments were conducted to evaluate the effectiveness of
the proposed method. We used a 10-language dataset of NICT

to evaluate the proposed method. The data were spoken by na-
tive speakers. We split them into training (Train), validation
(Valid), and test (Test) sets. There were 100.76 hours of train-
ing data, and 24.95 hours of test data. The average duration
was 7.6 seconds. The number of utterances for the training
data was 45000, and for each language was 4500. For the
validation and test data, it was 300 and 1200 utterances for
each language. Detailed information can be referred to [14].
The utterance identification error rate (UER) was used as the
evaluation criterion.

4.1. Implementation of baseline systems

I-vector-based method with multiclass logistic regression
classifier was examined for comparison. The i-vectors were
600-dimensional vectors that extracted with 12-dimensional
MFCCs and log power feature applied shifted delta cepstral.
The script of Kaldi toolkit [18] was used for the i-vector
system preparation.

For end-to-end methods, we built systems with RNN and
DCNN for short utterance LID tasks, i.e., 2.0s, 1.5s and 1.0s.
The DCNN architecture used for four-second inputs (teacher
model) is illustrated in Table 1. The DCNN model included
seven convolutional layer blocks and two fully-connected
layer blocks. Each convolutional layer block included one
convolution layer, one max-pooling layer and one batch nor-
malization layer. The fully-connected layer block included
one fully-connected layer and one batch normalization layer.
For inputs of different lengths, the stride of max-pooling was
changed to make the output of the last convolution layer had
same dimension. For comparison, we built systems with
RNN and bidirectional RNN and compared different config-
urations (one or more hidden layers with 256 neurons) and
dropout with 0.0, 0.3 and 0.5. The mini-batch size was set to
32, RMSProp optimizer with learning rate 0.001 for model
optimization. The maximum learning epoch was set to 100,
and the optimal model was selected using the validation data
set.

To extract the target length utterances, power energy-
based VAD was used to detect the speech, then certain length
utterances were cut with a shift that equaled to the duration
length. Then, 60-dimensional mel-filterbank features were
extracted for all the utterances. Finally, mean and variance
normalization was applied. For the testing dataset, only the
beginning of the speech was used based on the VAD result.

4.2. Implementation of FRKD and the proposed method

In FRKD framework, we used a four-second-based DCNN
model as the teacher model. The output of the flatten hidden
layer was used for feature representation regularization, i.e.,
Lkt. The student models were optimized with Eq. 1. For λ,
we evaluated it with values of 0.1, 0.3, 0.5 and 0.7.

The proposed method was implemented based on the
FRKD framework. The interactive teacher-student training
were done based on the models trained with FRKD. There
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Table 1. The DCNN network used for the teacher model;
same padding was used for conv and max-pooling layers.

Teacher Network(4.0s)
Input: x ∈ <400×60

conv (7×7, 16, relu), max-pooling(3×3, stride 2× 2), BN
conv (5×5, 32, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 64, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 64, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 128, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 128, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 256, relu), max-pooling(3×3, stride 2× 2), BN
Flatten()
FC(512, relu), BN
FC(512, relu), BN
Output: softmax(10)

were two optimization steps, i.e., minimizing Eq. 5 and Eq.
6. We set λ to 0.3 for Eq. 5 by referring to the investigation
of FRKD. For Eq. 6, we fixed ξ to 0.1 and evaluated γ with
0.1, 0.2 and 0.3. Because of the loss of a pre-trained student
model on training data will become very small, we used the
loss of the validation data for Eq. 6. For all the durations, i.e.,
1.0s, 1.5s, and 2.0s, we used the same teacher model. The
basic configuration of student models was same besides the
stride of max-pooling setting. Other settings, e.g., optimizer,
mini-batch, were same to that of the DCNN baseline systems.

4.3. Results and discussions

Table 2 shows the results of i-vector system, RNN, biRNN
and DCNN models with two-second utterances. For RNN
models, the best results were obtained with two GRUs with-
out dropout, and two biGRUs with dropout set to 0.3. Dropout
setting was also investigated on DCNN models, however, we
could not obtain further improvement. Compared with other
systems, the DCNN model performed the best on this dataset.

For FRKD method, the best result was obtained with λ set
to 0.3. Based on the best setting of the FRKD method, we in-
vestigated to prevent local minimum of the student model by
adding a random uniform noise to the output of the teacher’s
hidden layer, i.e., uT (xT ; ΘT ). We compared different range
of noise from 0.05 to 0.5, and observed a slight improvement
with a range of random uniform noise set to [-0.1, 0.1], i.e.,
the result of FRKD-P.

For the proposed method, i.e., ITSL, both Eq. 5 and Eq.
6 were used for optimization. For Eq. 5, we set λ to 0.3 by
referring to the FRKD results. For Eq. 6, we set ξ to 0.1, and
compared different γ with 0.1, 0.2 and 0.3. The best result
was obtained when γ was set to 0.1. Compared with pertur-
bation with a random noise, the proposed method obtained a
more larger improvement. Compared with the DCNN model,
the FRKD method obtained 23.1% relative improvement. The
proposed method obtained 30.4% and 9.5% relative improve-

Table 2. Investigation results of baseline systems and the pro-
posed method with two-second utterances (UER %).

Methods λ γ Valid. Test
I-vector - - - 11.11

GRU(256x2) - - 11.20 12.63
biGRU(256x2) - - 11.03 12.22

DCNN [14] - - 6.00 6.87
DCNN (4.0s Teacher) - - 2.43 2.83

FRKD [14] 0.1 - 4.83 5.67
FRKD [14] 0.3 - 4.17 5.28
FRKD [14] 0.5 - 4.23 5.33
FRKD [14] 0.7 - 4.74 5.49

FRKD-P (Perturbation) 0.3 - 4.43 5.17
ITSL (Proposed) 0.3 0.1 3.73 4.78
ITSL (Proposed) 0.3 0.2 4.03 5.12
ITSL (Proposed) 0.3 0.3 3.93 4.86

Table 3. Summary of the results of baseline, FRKD, FRKD
with perturbation (FRKD-P) and ITSL (UER %).

Test DCNN FRKD FRKD-P ITSL
Test (2.0s) 6.87 5.28 5.17 4.78
Test (1.5s) 8.63 7.10 6.99 6.67
Test (1.0s) 13.18 12.12 11.94 11.07

ments than DCNN and FRKD methods, respectively.
We summarized the results of DCNN, FRKD, FRKD with

random noise perturbation and the proposed method in Ta-
ble 3. For all the student models, we used the same four-
second-based teacher model. λ was set to 0.3 and γ, ξ were
set to 0.1. From these results, we observed that the pertur-
bation with random noise had a slight contribution for over-
coming the local minimum problem. The proposed method
showed its effectiveness on all the target duration utterances.
For 2.0s, 1.5s, 1.0s test data, the proposed method obtained
9.5%, 6.1% and 8.7% relative improvements than the FRKD
method, and obtained 30.4%, 22.7% and 16.0% relative im-
provements than the DCNN models. For LID tasks, the exper-
iment results showed that the proposed method is an effective
method for improving the performance on short utterances.

5. CONCLUSIONS

In this paper, we proposed an interactive teacher-student
learning method for improving the optimization of student
models for short utterance LID tasks. Different from con-
ventional teacher-student frameworks use fixed pre-trained
teacher models, the proposed method further tunes the teacher
model with reference to the loss of the student models, that
drives the optimization of student models to escape from lo-
cal minimum. Experiment results showed that the proposed
method is an effective method for short duration utterance
LID tasks.
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