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ABSTRACT

The task of automatic language identification (LID) involving mul-
tiple dialects of the same language family on short speech record-
ings is a challenging problem. This can be further complicated for
short-duration audio snippets in the presence of noise sources. In
these scenarios, the identity of the language/dialect may be reliably
present only in parts of the speech embedded in the temporal se-
quence. The conventional approaches to LID (and for speaker recog-
nition) ignore the sequence information by extracting long-term sta-
tistical summary of the recording assuming an independence of the
feature frames. In this paper, we propose to develop an end-to-end
neural network framework utilizing short-sequence information in
language recognition. A hierarchical gated recurrent unit (HGRU)
model with attention module is proposed for incorporating relevance
in language recognition, where parts of speech data are weighted
more based on their relevance for the language recognition task.
Experiments are performed using the language recognition task in
NIST LRE 2017 Challenge using clean, noisy and multi-speaker
speech data. In these experiments, the proposed approach yields sig-
nificant improvements over the conventional i-vector based language
recognition approaches as well as previously proposed approach to
language recognition using recurrent networks.

Index Terms: End to end language identification, hierarchical GRU,
attention.

1. INTRODUCTION

The problem of recognizing the spoken language of a given audio
segment is of considerable interest for several commercial appli-
cations like speech translation [1], multi-lingual speech recognition
[2], document retrieval [3] as well as in defense and surveillance ap-
plications [4]. In the recent years, several advances in signal process-
ing, machine learning and the application of factor analysis methods
have contributed to improving the performance of language recog-
nition systems [5]. However, the task can be challenging when the
recognition involves multiple dialects of the same language and for
cases in which the test audio segments are short in duration, espe-
cially in the presence of noise and other artifacts. In this paper, we
propose a modeling framework to address some of the challenges in
LID systems.

Traditionally, phoneme recognition followed by language mod-
eling (PRLM) was one of the popular methods for automatic LID
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task [6, 7]. This approach uses a multilingual phoneme recognizer to
generate phoneme sequences which are converted to language model
(n-gram) features for the LID classifier. In the recent past, the use of
deep neural network (DNN) based posterior features were attempted
for LID [8] and the use of bottleneck features derived from a speech
recognition acoustic model have recently shown consistent improve-
ments for language recognition [9, 10].

The development of i-vectors as one of the primary features for
LID was first introduced in [11]. They are features of fixed dimen-
sions derived from variable length speech utterances using a back-
ground model [12] and capture long term information of the speech
signal such as speaker and language. The i-vectors extracted from
the training data are then used to train classifiers such as support
vector machines (SVMs) [13, 14].

End-to-end approaches to language recognition have been ex-
plored with long short term memory (LSTM) networks [15, 16, 17]
and DNNs [18]. Both [17, 18] use attention based approaches. The
work in [17] uses LSTM architecture with attention mechanism for
short duration (3s) utterances. A recent approach using curriculum
learning is also explored for noise robust language recognition [19].
The neural network based models tend to perform well only for short
duration audio segments. Hence, the state-of-art language recogni-
tion systems using large scale NIST language recognition evalua-
tion (LRE) challenges, continue to use the i-vector based approaches
[20].

In this paper, we propose an end-to-end approach for language
recognition using a hierarchical gated recurrent unit (HGRU) archi-
tecture with attention module. The HGRU model consists of two
layers of GRU followed by a bidirectional GRU layer and it imple-
ments a temporal hierarchy where the initial layer accumulates local
information from 100msec segments and the next layer accumulates
information from segments of 1sec length. The output of representa-
tions at 1sec segment level are fed to the attention model [21] which
is then mapped to the language classes.

Experiments are performed using the training and evaluation
data of NIST Language Recognition Evaluation (LRE) 2017 chal-
lenge in the fixed training condition. In the LRE experiments, the
end-to-end HGRU approach provides improved language recogni-
tion performance compared to the traditional i-vector baseline as
well as the previously proposed LSTM model for LID [15, 16]. The
HGRU model is also shown to be significantly faster in terms of
computational complexity. Further, additional experiments are per-
formed with various noise conditions and with multi-speaker data.
In these experiments, the HGRU model shows significant benefits
over the baseline approach.

The rest of the paper is organized as follows. In Section 2, we
describe the proposed HGRU based LID system. The experimen-
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tal setup used for the LRE2017 dataset as well as the details of the
baseline system are provided in Section 3. The results of various
LID experiments are reported in Section 4 which is followed by a
discussion on the proposed model in Section 5. The summary of the
work is provided in Section 6.

2. HGRU BASED LID SYSTEM

Long Short-Term Memory (LSTM) recurrent neural networks
(RNN) [22] were proposed to overcome the difficulty of handling
long term dependencies in the input sequences by vanilla RNNs.
A simplified version of the LSTM function is the Gated Recurrent
Unit (GRU) proposed in [23]. In many tasks, the GRUs that have a
smaller number of parameters are shown to achieve or improve over
the performance of LSTMs [24]. Even with LSTM/GRU models,
the modeling of long sequences can be cumbersome [16] as the
sequences in LID can be of duration 10sec (1000 frames at 100 Hz
sampling) and 30sec (3000 frames) or even longer. In order to model
such long sequences, we propose a novel hierarchical bidirectional
GRU network with attention in this paper.

The block schematic of the proposed model is given in Fig. 1.
The input to the model is a sequence of acoustic bottleneck (BN)
features from a previously trained deep neural network automatic
speech recognition (ASR) system (similar to the baseline model
[20]), where each feature vector represents information from short
window (25msec with a hop of 10msec) of the speech utterance.
At the first layer, a 256 cell unidirectional GRU block accumulates
information across a window of 200msec i.e, a sequence of 20 fea-
ture vectors with a shift of 100msec over the entire input sequence.
The output from the first layer is a sequence of vectors that are
sampled every 100msec with each vector representing information
from overlapping 200msec segments of input speech. This is then
fed to the second layer of GRU block with 512 cells where the
information is accumulated over a window of 1sec (i.e., 10 vectors
from the previous layer sampled every 100msec.) The accumulated
1sec vectors from second layer are fed to the final bidirectional GRU
layer [25] with 512 cells in the third layer. The forward hidden state

h; and the backward hidden state h<_t of bidirectional GRU are then
concatenated and used in the attention network i.e, hy = [hy, h:].

The output of the three layer hierarchical GRU model contains
representations at 1s level. Instead of directly accumulating the
statistics, we propose to use an attention model to weight the 1sec
representations based on their relevance to the language classifica-
tion task. The attention method [21] provides an efficient way to
aggregate the sequence of 1sec vectors. The attention mechanism
used in this work is shown in Fig. 2. The model implements the
following set of equations,
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Here, Wi, b; are the weights and the bias of the attention module
which are learned in training process along with the vector u;. [
denotes the fixed dimensional embedding from the input sequence.
The attention module based on the similarity of u; with w; assigns
normalized weights a; using a softmax function. These weights are
then used for aggregating the output sequence of bidirectional GRU
layer to the utterance level representation /, which is then mapped to
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Fig. 2. Attention Mechanism in HGRU.

the final language targets through a layer of fully connected network
(FCN). Since the distribution of the embeddings / are quite different
for short and long duration inputs, we use two separate target layers,
one for short duration inputs that are of the order of 3sec and other
one with longer duration input sequences that are 10sec or above.
The entire network is trained using Adam optimization and Back
Propagation Through Time (BPTT) algorithm [26].

3. EXPERIMENTAL SETUP

3.1. Data Used

The LID system training is performed on the LRE2017 train-
ing LDC2017E22 dataset and the evaluation is performed using
LRE2017 evaluation setup. The LRE2017 training data has five ma-
jor language clusters (Arabic, Chinese, English, Slavic and Iberian)
with 14 target dialects with a total duration of 2069 hours in 16205
files. The development dataset consists of 3661 files which contain
253 hours of audio and the evaluation dataset consists of 25451 files
with 1065 hours of audio. The development and evaluation datasets
are further partitioned into utterances of duration 3sec, 10sec or
30sec and the audio extracted from video data consisting of 1000sec
recordings.Since the LRE2017 was a closed language set LID eval-
uation, we use the accuracy as the primary metric for evaluating
various models in this work. We also report the official LRE cost
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metric Cavg for reference on the original LRE evaluation set. It
is worth noting that the cost metric of C'avg can be improved with
score calibration using a development set. In this paper, we have
reported LID results from raw scores without any calibration and
this may be somewhat disadvantageous to neural network models
as the neural network scores estimate multi-class posterior prob-
abilities while the SVM estimates the scores in a one-versus-rest
classification framework.

The robustness of the proposed model towards noise is evaluated
by experimenting with a noisy version of the eval data. We use five
different types of noise (Babble, Restaurant, Airport, Street, Sub-
way) at various signal-to-noise ratios (0, 5, 10, 15 and 20 dB).The
noise is either added to the entire input utterance or only to one half
of the input utterance (to simulate non-stationary noise effects). We
also evaluate multi-speaker conditions where the evaluation data of
the same language from 2 speakers is merged to form a single utter-
ance. These scenarios reflect various practical conditions involving
stationary, non-stationary noises as well as conditions with multiple
talkers of the same language.

3.2. Feature Extraction

We extract 80 dimensional bottleneck features (BNF) from a DNN
trained for automatic speech recognition using Kaldi [27] frame-
work. For the DNN Bottleneck (BN) feature extraction, we trained
the model using 39 (13+ A+ AA) dimensional MFCC features with
10ms frame rate over 25ms windows on labeled speech data from
Switchboard SWB1 and Fisher corpora (~2000 hours). The model
uses 7 hidden layers with ReLU activation and layer-wise batch nor-
malization.

Once the BNF features are extracted for the LID data, a speech
activity detection (SAD) algorithm was applied to remove the un-
voiced frames [28]. This was followed by cepstral mean variance
normalization (CMVN) done over each utterance on the BNF fea-
tures, followed by a sliding window cepstral mean variance normal-
ization (CMVN) over a 3sec window.

3.3. Baseline System
3.3.1. i-vector LDA-SVM

The i-vectors are one of the most widely used features for language
recognition and we follow the procedure described in [11] for their
extraction. They are features of fixed dimension derived from a vari-
able length sequence of front end BN features. A Gaussian Mixture
Universal Background Model (GMM-UBM) with 2048 mixtures is
trained by pooling the features (BNF) from all the utterances in the
training dataset. The means of the GMM are adapted to each utter-
ance using the Baum-Welch (BW) statistics of the front-end features
and a Total Variability Model (TVM) is trained using the BW statis-
tics to derive a total variability subspace of 500 dimensions. The
i-vectors, once extracted for each of the speech files, are then pro-
cessed with length normalization and linear discriminant analysis
(LDA). A support vector machine (SVM) classifier is then trained
on these i-vectors and used for language identification [20].

3.3.2. LSTM

In [15, 16], the authors have proposed a Long Short Term Memory
Recurrent Neural Network (LSTM-RNN) based end-to-end model
for exploiting temporal information for LID. In [16], for experiments
on NIST datasets, it is shown that even though the LSTM model
outperforms i-vector baseline on short duration (3sec) test segments,

Table 1. LRE2017 evaluation results on clean evaluation data in
terms of accuracy in % (and Cavg in parenthesis) for baseline system
[20], LSTM model [16] and the proposed HGRU model.

Dur. (sec) ivec [20] LSTM [16] HGRU
3 53.8 (0.53) | 54.7 (0.55) | 55.1(0.55)
10 72.3(0.27) | 72.1(0.35) | 74.1(0.32)
30 83.0 (0.13) | 76.1(0.28) | 83.0(0.23)
1000 56.2 (0.54) | 42.8(0.79) | 53.5(0.62)
overall 67.9 (0.37) | 64.3(0.48) | 68.5(0.42)

Table 2. LRE2017 evaluation results in terms of accuracy (%) for
noisy data and partial noisy data for i-vector baseline system [20]
and the proposed HGRU model.

| Cond. [ ivec [20] | HGRU |

| Clean [ 72.3 [ 74.1 ‘
Noisy 5 dB 47.9 45.8
Noisy 10 dB 53.8 53.9
Noisy 15 dB 57.8 60.2
Noisy 20 dB 60.0 64.2
Avg. 54.9 56.0
Partial Noisy 5 dB 53.3 55.3
Partial Noisy 10 dB 55.8 60.2
Partial Noisy 15 dB 58.5 63.2
Partial Noisy 20 dB 59.8 65.7
Avg. 56.9 61.1

its performance is relatively poor on longer duration test segments
(10sec, 30sec). We implement their best performing LSTM model,
which is a two layer LSTM with 512 units in each layer followed by
an output softmax layer as a baseline end to end system.

4. RESULTS

The results of LRE evaluation on various conditions are reported in
Table 1. The LRE evaluations of 3sec, 10sec and 30sec use clean
recordings while the 1000sec recordings use audio extracted from
video data. Note that none of the models were trained with any au-
dio extracted from video data and all the models perform similar or
worse than 3sec condition. The LSTM model that is previously pro-
posed for end-to-end language recognition [15, 16] performs better
than the baseline i-vector system in terms of accuracy for the 3sec
condition. However the performance drops below the baseline sys-
tem for longer duration conditions as reported in [16]. In particular,
the accuracy drops significantly compared to the baseline i-vector
system for 30sec condition and the 1000sec condition.

For the case of HGRU model, the performance of the LID sys-
tem improves over the baseline system for input duration of 3sec,
and 10sec, while being comparable to the baseline system for the
30sec. This also marks a significant improvement for the HGRU
system over the previous end-to-end baseline using LSTM model.
For the 1000sec condition, the performance of the HGRU system
is worse than the baseline system however being much better than
the LSTM model. These experiments highlight that the HGRU with
attention provides a considerable advancement for end-to-end LID
task.

The results for the LID experiments on the noisy data are shown
in Table 2. Here, we use the 10sec evaluation data and report the re-
sults for two separate conditions, one in which the noise is uniformly
added to the input utterance and the second one in which the noise is
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Table 3. Approximate computational time in seconds for ten 30sec
eval files using a single CPU. Machine Specification: 32 CPU, 8
core, 2 thread Intel x86_64 machine with 16 GB Nvidia Quadro
P5000 GPU cards.

ivec [20] | LSTM [16] | HGRU
CPU 12 51 8
GPU 12 11.5 1.5

selectively added only to the first half of input utterance. The second
scenario simulates a more common condition in practical applica-
tions as it creates a non-stationary noise environment encountered in
real world noise. The SNR value reported is SNR for the first half
of the utterance where the noise is added (and not the average SNR
of the entire recording). As seen in these experiments, the proposed
HGRU model provides significant improvements over the baseline
system for both the noisy condition (for all SNR values except the 5
dB condition) as well as the partial noisy condition (for all SNR val-
ues). The relative improvements over the baseline system are about
10% for the HGRU model for the partial noise condition.

5. DISCUSSION

5.1. Computational Complexity

During the testing phase, the end-to-end HGRU model involves
fewer number of steps relative to an i-vector based system since it
directly uses the front end BN features. We perform a comparison of
the computational complexity between the i-vector baseline system,
LSTM baseline system and the proposed model in terms of running
time on a single CPU based system for LID score generation. This
run time computation was performed using 30sec test files. On the
average, the i-vector baseline system requires 1.2sec of computation
time, while the HGRU system requires only 0.8sec(0.15sec) on
CPU(GPU). This is a noticeable improvement in the computational
complexity of the HGRU system which is achieved at comparable or
improved LID performance (Table 1). It is also worthwhile noting
that the HGRU system has lower computational complexity than
the LSTM system owing to its architecture along with significant
improvement in performance.

5.2. Attention Analysis

In this subsection, we analyze the role of the attention mechanism in
the proposed HGRU model. We plot the spectrogram of a partially
corrupted speech recording (first 5sec at 10 dB SNR) and the cor-
responding attention vector which is computed at 1sec resolution in
Fig. 3. As can be seen, the attention weights for the later part of the
utterance where the SNR is high are relatively higher making them
more relevant to the task. In our informal analysis, we have also
found that even in clean data conditions, the attention vector makes
intuitive sense (for example, in classifying British English record-
ings, the attention vector tends to provide higher weight for 1sec
regions containing more accented speech segments).

5.3. Multi-talker LID and LID without SAD

We also performed two additional LID experiments with the pro-
posed HGRU model. The first experiment uses speech recordings in
testing that contain multiple speakers. This is obtained by merging
3sec speech utterances in the clean LRE evaluation set from multiple
talkers of the same language. The second experiment explores the
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Fig. 3. Sample Spectrogram of a partially noised utterance with
attention weighting from HGRU. Noise (10 dB SNR) was added to
the first 5sec of the utterance.

Table 4. LID accuracy in % for additional experiments with multiple
speakers speaking the same language and the experiments without
any SAD information.

Cond. ivec [20] | HGRU
Multi-Speaker 60.6 67.7
Without SAD information 49.7 52.7

sensitivity of the LID systems to the absence of any speech activity
detection (SAD) information. Both these experiments use the 3sec
recording data from the LRE evaluation setup. As seen in Table 4,
the proposed HGRU model is more robust to the presence of multi-
ple talkers in the evaluation dataset. The HGRU model is also less
sensitive to the absence of any SAD information for the 3sec audio
snippets. These experiments confirm that the HGRU model is able
to efficiently model the time series for the language classification by
relevance weighting based on the attention mechanism.

6. SUMMARY

The following are the novel contributions from the current work

e A new hierarchical gated recurrent unit (HGRU) based LID
system is proposed for end-to-end spoken language recogni-
tion that also contains an attention mechanism for relevance
weighting.

e The proposed HGRU model is shown to significantly improve
over the previous attempts for end-to-end LSTM based lan-
guage recognition systems.

o The HGRU approach is robust to the presence of noise in the
test data as well as in non-stationary conditions like partially
corrupted speech data or multi-talker speech segments.

e The attention mechanism in HGRU plays the role of rele-
vance weighting, where portions of the speech signal that are
more relevant to classification decision are taken into account.
The conventional system based on i-vectors ignores sequen-
tial speech information by computing a statistical average.

From this work, we find that the research direction of using temporal
sequence information along with attention based relevance weight-
ing is promising and warrants further exploration in the future for
large scale speaker and language recognition tasks.
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