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ABSTRACT

This paper presents an investigation into speaker-invariant fea-
ture learning and domain adaptation for language recognition (LR)
with short utterances. While following the conventional design
of i-vector front-end and probabilistic linear discriminant analysis
(PLDA) back-end, we propose to apply speaker adversarial multi-
task learning (AMTL) to aim explicitly at learning speaker-invariant
multilingual bottleneck features and perform unsupervised PLDA
adaptation to alleviate performance degradation caused by domain
mismatch between training and test data. Through a demo experi-
ment, we show the adverse effect of domain mismatch and motivate
the necessity of domain adaptation. LR experiments are carried out
with the AP17-OLR challenge dataset to evaluate the effectiveness
of the proposed methods in comparison with the state of the art.
The results show that both speaker AMTL and unsupervised PLDA
adaptation contribute significantly to performance improvement on
the short-duration LR task. The effectiveness of PLDA adaptation is
found to be insensitive to the number of clusters assumed in unsuper-
vised data labeling. Our best system outperforms the state-of-the-art
system of AP17-OLR and shows relative improvements of 6.98% in
terms of Cavg and 4.80% in terms of EER on 1-second test set.

Index Terms— Language recognition, domain mismatch, unsu-
pervised adaptation, adversarial learning

1. INTRODUCTION

Language recognition (LR) refers to the problem of automatically
determining which language is being spoken in a given speech ut-
terance. LR has many practical applications in multilingual and
multimedia human-computer interaction and information process-
ing. In the past decade, most LR systems were based on the i-
vector approach [1, 2], i.e., training and extracting per-utterance i-
vector representations [3], followed by classification with a back-
end model [4]. The success of deep neural network (DNN) mod-
els in ASR [5] and speaker recognition (SR) [6, 7] has motivated
extensive studies on applying DNN to LR [8–19]. One of the rep-
resentative ideas is to extract phonetic bottleneck features (BNFs)
from a DNN-based acoustic model and use BNFs to replace conven-
tional spectral features for i-vector training [9, 10, 12]. Another idea
is to train a DNN to classify language identities, followed by com-
puting utterance-level embeddings as fixed-length representations of
variable-length utterances [13, 14, 16, 18]. The fixed-length embed-
dings could be realized either by adding average pooling layer(s) in
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Fig. 1. System framework in this work.

the DNN or via a recurrent neural network (RNN), similar to pre-
vious works on SR [6, 20]. This approach bypasses the process of
i-vector training, though a back-end model is needed to produce LR
results. Most recently, end-to-end (E2E) approaches to LR have been
attempted enthusiastically [11,17,19]. In an E2E LR system, feature
extraction and back-end classifier are jointly trained to minimize the
error of language classification. E2E approaches have demonstrated
great potential to outperform i-vector based approaches, especially
when data augmentation methods are incorporated [19]. Neverthe-
less, for applications with limited training data, i-vector systems are
more preferred [16]. The present study, as illustrated in Fig. 1, ad-
dresses the LR problem within the framework of i-vector front-end
and probabilistic linear discriminant analysis (PLDA) back-end. The
proposed system differs from previous designs in two aspects: (1)
front-end frame-level feature representation learning; (2) back-end
PLDA adaptation.

First, speaker-invariant BNF learning is proposed to achieve
improved feature representation for i-vector training in the front-
end. Many previous studies showed that phonetically-discriminative
BNFs [9, 10] and their multilingual variants [12] outperform spec-
tral features for i-vector training. This is partially explained by
that the BNFs optimized for ASR senone classification contain less
linguistically-irrelevant information, e.g., speaker change. Moti-
vated by this, we propose to apply speaker adversarial multi-task
learning (AMTL) [21] to aim explicitly at learning speaker-invariant
features. AMTL was applied first to robust ASR [22], and later to
speaker adaptation [23], accent adaptation [24] and domain adap-
tation [25]. The basic idea is to introduce an adversarial speaker
classification network on top of the bottleneck layer in the senone
classification network, forcing the output representation of bottle-
neck layer to be speaker-invariant. The learned deep features can be
regarded as a special type of phonetic BNFs, as they are not only
phonetically-discriminative but also speaker-invariant. To the best of
our knowledge, there was no previous attempt of applying speaker
AMTL to LR.

Second, unsupervised PLDA adaptation is applied to allevi-
ate performance degradation caused by domain mismatch between
training and test data. Commonly adopted back-end models in
LR systems include PLDA [10] and Gaussian linear classifier [1].
While they generally perform well in a domain-matched scenario,
they may suffer severe performance degradation if test utterances are
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recorded under different conditions from training data [26]. Meth-
ods of mismatch compensation developed originally for SR [27–31]
are expected to be applicable to LR. Meanwhile, a simple and ef-
fective approach named unsupervised PLDA adaptation [31] uses a
domain-mismatched PLDA to perform test i-vector clustering. With
these cluster labels, a new domain-matched PLDA is obtained as
the in-domain back-end. The present work follows [31] with some
modifications to better fit the LR problem.

Although the two aforementioned contributions are made within
the i-vector framework, they are also applicable and may potentially
be beneficial to DNN embedding-based LR frameworks, which have
been actively investigated in the recent past [16, 18, 19].

2. SPEAKER-INVARIANT FEATURES FOR I-VECTOR
TRAINING

2.1. Speaker Adversarial multi-task learning

Adversarial multi-task learning (AMTL) was first proposed by
Ganin et al. [21] for unsupervised domain adaptation. In our work,
AMTL is applied to the problem of learning speaker-invariant and
phonetically-discriminative feature representation for i-vector train-
ing.

Fig. 2 shows the architecture of a speaker AMTL-DNN. It com-
prises three sub-networks, namely the shared-hidden-layer feature
extractor (Mh), the senone classifier (My), and the speaker classi-
fier (Ms). This architecture is similar to the MTL-DNN [32] used
in multilingual ASR [33–35]. The major difference of AMTL from
MTL is on how learning error is propagated from Ms to Mh. In
AMTL, the error is reversely propagated such that the output layer of
Mh is forced to learn speaker-invariant features so as to confuseMs,
while Ms tries to correctly classify features into their corresponding
speakers. At the same time, My learns to predict the senone iden-
tities of input features, and back-propagates errors to Mh in a usual
way. After training, the feature representation learnt by Mh is ex-
pected to be both phonetically-discriminative and speaker-invariant.
By arranging a low-dimensional linearly-activated layer at the output
of Mh, BNFs can be obtained for subsequent i-vector training.

Let θh, θy and θs denote the network parameters of Mh,My

and Ms, respectively. With the stochastic gradient descent (SGD)
algorithm, these parameters are updated as,

θy ← θy − δ
∂Ly

∂θy
, (1)

θs ← θs − δ
∂Ls

∂θs
, (2)

θh ← θh − δ
[∂Ly

∂θh
− λ∂Ls

∂θh

]
, (3)

where δ is the learning rate, Ly and Ls are the loss values of senone
and speaker classification tasks respectively, both in terms of cross-
entropy (CE). λ denotes the adversarial weight, which controls the
trade-off of training losses between My and Ms.

Training data of an LR task usually come from multiple lan-
guages. An intuitive approach is to build multiple language-
dependent output layers and train the senone classifierMy as in [33].
Though feasible, this approach would lead to an undesirably large
number of model parameters in My , especially if there are a large
number of target languages. For certain tasks of LR, e.g., the AP17-
OLR challenge [36], transcriptions and/or lexicons are not well
supported, in contrary to the case of large-vocabulary ASR. In this
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Fig. 2. Speaker AMTL-DNN architecture.

study, an out-of-domain (OOD) phone recognizer is utilized to gen-
erate senone labels for My training. In this way, the model size of
My is controlled and fixed.

2.2. GMM-UBM/i-vector with speaker-invariant BNFs

With the speaker-invariant and phonetically-discriminative BNFs de-
scribed above, conventional GMM-UBM i-vector training pipeline
as proposed in [3] can be applied to convert variable-length utter-
ances into low-dimensional and fixed-length i-vector representa-
tions. Details of GMM-UBM/i-vector estimation algorithms can be
found in [3].

3. UNSUPERVISED ADAPTATION OF PLDA

The back-end being investigated here employs the simplified PLDA
[4]. Unsupervised adaptation of PLDA parameters [31] is applied to
alleviate the domain mismatch between training and test data.

3.1. PLDA back-end

PLDA model parameters are estimated from whitened and length-
normalized [4] i-vector representations of training utterances and
their ground-truth language labels. Given an utterance j of language
i, PLDA assumes the corresponding i-vector ωij is generated as,

ωij = µ+ Fhi + εij ,

hi ∼ N (0, I),

εij ∼ N (0,Σ),

(4)

where ωij ∈ RD , F ∈ RD×P , Σ ∈ RD×D . Columns of the
D-by-P matrix F provide the basis for the language-specific sub-
space, or ‘eigen-language’, by imitating the terminologies in [4].
P denotes the dimension of this subspace. A reasonable P to be
smaller than the number of classes, i.e., the number of languages
in our case. According to Eq. (4), each i-vector is drawn from the
Gaussian distributionN (µ,Σ+FFT ), whereµ is global mean and
can be precomputed and removed. Σ and FFT represent within- and
between-class variability. These parameters can be estimated by an
EM algorithm as described in [37].

Given a test i-vector ωt and language i, PLDA gives a similarity
score by computing the log likelihood ratio (LLR) as,

R(ωt, i) = log
p(ωi,ωt|FFᵀ,Λ)

p(ωi|FFᵀ,Λ)p(ωt|FFᵀ,Λ)
, (5)

where ωi is the average of training i-vectors that belong to language
i. Details of the LLR computation can be found in [38].

5962



3.2. Unsupervised PLDA adaptation

An unsupervised PLDA adaptation method is applied to alleviate
performance degradation caused by the mismatch between training
and test domains. This method was proposed in [31] for SR tasks. It
is modified in the present study to fit the LR problem. The idea of
PLDA adaptation is to leverage test (in-domain) i-vectors for adapt-
ing parameters {F0,Λ0}, which are estimated from training (out-
of-domain) data. Lacking labelled in-domain data poses a major
problem. By assigning a label to each test i-vector through a cluster-
ing process, a new domain-adapted PLDA model {Fad,Λad} can
be estimated.

We use a bottom-up agglomerative hierarchical clustering
(AHC) algorithm here. The algorithm starts by treating each in-
put pattern as an initial cluster, and proceeds by merging similar
clusters based on a pre-defined distance measure. Following [31],
the distance between a pair of i-vectors η1 and η2 is defined as,

d(η1,η2) = − log
p(η1,η2|F0F0

ᵀ,Λ0)

p(η1|F0F0
ᵀ,Λ0)p(η2|F0F0

ᵀ,Λ0)
. (6)

The complete-linkage criterion is chosen as the distance measure be-
tween two clusters, i.e., the maximum inter-cluster pair-wise i-vector
distance. The stopping criterion is based on a pre-defined cluster
number. After clustering, cluster labels assigned to test i-vectors
serve as supervision for in-domain PLDA estimation. The in-domain
PLDA will be used for final scoring according to Eq. (5). Note that
unlike [31], this work does not employ parameter interpolation.

4. AP17-OLR TASK DESCRIPTION

4.1. Dataset and evaluation metric

LR experiments in this study are carried out on the dataset provided
for the second Oriental Language Recognition (OLR) Challenge
held at the APSIPA ASC 2017 (AP17-OLR) [36]. The dataset cov-
ers 10 oriental languages, each with about 10-hour speech recorded
by mobile phones. The training set consists of 54, 266 utterances
with total length of about 79 hours. Test utterances are divided into
three groups: 1 second, 3 second and full duration. Our work is
focused on the 1 second test condition. The development set for this
condition (dev 1s) contains 17, 948 utterances, 5 hours in duration.
The test set (test 1s) contains 22, 051 utterances, 6 hours in duration.
More details about the dataset could be found in [36].

The primary evaluation metric of the AP17-OLR challenge is
Cavg , which is defined as,

Cavg =
1

N

∑
Lt

0.5 · [PMS(Lt) +
1

N − 1

∑
Ln

PFA(Lt, Ln)], (7)

where N is the number of languages, Lt and Ln denote the target
and non-target languages, PMS and PFA are the missing and false
alarm probabilities. In addition, equal error rate (EER) metric is also
evaluated.

4.2. Measuring training and development set mismatch

According to the organizer of the AP17-OLR Challenge, there exists
noticeable domain mismatch between training and development/test
data [36]. To gain a better understanding about the mismatch, a demo
experiment is carried out as described below.

A subset of training data (12 hours), denoted as pseudo-dev, is
randomly selected and designated as the domain-match evaluation
set, while dev 1s is regarded as as the domain-mismatch evaluation

set. The remaining 67-hour training data are denoted as training-
part. There is no overlap of speakers between training-part and
pseudo-dev. Utterances of training-part and pseudo-dev sets are
optionally trimmed to 1 second in duration. If trimming is applied,
the datasets are denoted as training-part 1s and pseudo-dev 1s. A
multi-layer perception (MLP) classifier is adopted as the back-end
to map each i-vector to the respective language identity. The MLP
has only one ReLU layer with 512 neurons before softmax output
layer, and is trained using the cross-entropy criterion. A GMM-
UBM i-vector extractor is trained with 60-dimensional voiced
MFCCs+∆+∆∆ without CMVN for training-part or training-
part 1s, resulting in 100-dimensional i-vectors. A full covariance
UBM with 256 Gaussian mixtures is estimated beforehand. After
training, the MLP back-end is evaluated on pseudo-dev( 1s) and
dev 1s to obtain Cavg and EER results as listed in Table 1.

Table 1. Cavg/EER% results of the demo experiment.
Training data Pseudo-dev Pseudo-dev 1s Dev 1s

Training-part 3.50/3.97 7.78/9.56 13.42/13.18
Training-part 1s — 7.61/8.94 14.01/13.88

We compare results on pseudo-dev and pseudo-dev 1s with
training-part as the training data, the performance gap manifests the
difficulty caused by short duration of test utterances. The drastic
degradation from pseudo-dev 1s to dev 1s suggests that a large part
of the mismatch is not related to the utterance duration, especially
when the training utterances are trimmed to 1 second long. This
confirms the necessity of domain adaptation for short-duration LR,
which is the main motivation of our work.

5. EXPERIMENTAL SETUP

5.1. Front-end

For the learning of speaker-invariant and phonetically-discriminative
feature representation, 40-dimensional MFCCs without cepstral
truncation and CMVN are used as the input to AMTL-DNN as
shown in Fig. 2. The feature extractor Mh is a time-delay NN
(TDNN) with contextual configuration as stated in Table 2. All
hidden layers except the linear bottleneck layer are activated with
ReLU. For both senone and speaker classifiers My and Ms, the
network comprises a 1024-neuron ReLU layer followed by a soft-
max output layer. To obtain the senone labels for training of My ,
a language-mismatched (Czech) phone recognizer [39] is used for
decoding and generating state-level alignment of training data. The
total number of states is 135. The speaker labels are obtained from
per-utterance speaker information provided in training data. The to-
tal number of speakers in training set is 641. Four adversarial weight
values λ are tested: {0, 0.125, 0.250, 0.375}. Note that λ = 0 is
equivalent to training the DNN without adversarial learning. The
minibatch size is 256. The learning rate starts from 1.5 · 10−3 to
1.5 · 10−4 with exponential decay. The number of training epochs
and iterations are 2 and 90, respectively.

After AMTL-DNN training, 64-dimensional BNFs for voiced
training frames are extracted for GMM-UBM i-vector training. A
full-covariance 2048-mixture UBM and a 400-dimensional i-vector
extractor are estimated, by which i-vectors for training, dev 1s and
test 1s are extracted. Experiments are implemented in Kaldi [40].
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Table 2. Contextual configuration of Mh.
Layer Layer context #Neurons

1 {−2,−1, 0, 1, 2} 1024
2 {0} 1024
3 {−1, 2} 1024
4 {−3,−3} 1024
5 {−7,−2} 1024
6 {0} 64

5.2. Back-end

An out-of-domain PLDA back-end (PLDA#1) is estimated on cen-
tered, length-normalized and within-class covariance normalized
(WCCN) training i-vectors. The language subspace dimension P is
9, as there are 10 languages inside training set. The model is esti-
mated for 10 iterations. Subsequently, unsupervised adaptation is
applied using dev 1s i-vectors as adaptation data. To generate dev 1s
labels, AHC algorithm with complete-linkage criterion is adopted to
perform i-vector clustering towards dev 1s set. Pair-wise distance
is defined in Equation (6). The stopping criterion for clustering is
based on a pre-defined cluster number. In this work, five cluster
numbers are tested, i.e. {10, 50, 100, 200, 500}. After clustering,
each dev 1s i-vector is assigned with a cluster label, with which
an in-domain PLDA (PLDA#2) is estimated. Same as PLDA#1,
PLDA#2 is estimated on centered, length-normalized and WCCN
i-vectors for 10 iterations, with subspace dimension 9.

6. RESULTS AND ANALYSES

6.1. Effectiveness of speaker-invariant BNFs

The effectiveness of speaker-invariant BNFs is evaluated on dev 1s
set. A simple cosine similarity scoring is used so that the LR re-
sults reflect mainly the front-end features. Fig. 3 plots the Cavg

and EER given by speaker AMTL-DNN BNFs with varying adver-
sarial weight λ. By increasing λ from 0 to 0.250, both Cavg and

λ = 0    λ = 0.125 λ = 0.250 λ = 0.375
9

9.5

10

10.5

11

11.5

12

C
avg

%

EER%

Fig. 3. Cavg/EER% results by employing speaker AMTL-DNN
BNFs on dev 1s. Back-end is cosine scoring.

EER show improvements. λ = 0.250 appears to be the optimum.
There is a relative improvement of 14.5% for Cavg , with respect to
λ = 0. This demonstrates the effectiveness of applying adversar-
ial speaker classification to suppress speaker variation in phonetic
BNFs. Consequently i-vectors trained from the new features encap-
sulate the total variability subspace that are more speaker-irrelevant.
This front-end improvement is expected to benefit not only cosine
scoring back-end model but also more advanced models, such as
PLDA with unsupervised adaptation adopted in this work.

6.2. Effectiveness of unsupervised PLDA adaptation

To evaluate the unsupervised PLDA adaptation back-end, we fix the
front-end architecture of speaker AMTL with λ = 0.250. Cavg and
EER with and without applying the adaptation method are summa-
rized as in Table 3 and 4.

Table 3. Cavg% results with/without unsupervised PLDA adapta-
tion. Back-end is PLDA.

No Adapt. Adapt. with cluster number SOTA [41]
10 50 100 200 500

Dev 1s 8.25 6.68 6.61 6.47 7.07 7.45 N/A
Test 1s 9.46 — — 7.36 — — 7.65

Table 4. EER% results with/without unsupervised PLDA adapta-
tion. Back-end is PLDA.

No Adapt. Adapt. with cluster number SOTA [41]
10 50 100 200 500

Dev 1s 7.56 6.84 6.65 6.49 6.99 7.26 N/A
Test 1s 8.78 — — 7.53 — — 7.91

Applying unsupervised adaptation in the PLDA back-end leads
to consistent improvement on LR performance, as compared to that
without adaptation. The results indicate the importance of reduc-
ing domain mismatch for short-duration LR. It is also noted that the
improved performance is relatively insensitive to the number of clus-
ters. With 100 clusters, the proposed system achieves the best per-
formance on dev 1s set, i.e., Cavg of 6.47% and EER of 6.49%,
which exceeds the system without adaptation by absolute 1.8% in
Cavg and 1.1% in EER.

Our best system is compared with the state of the art (SOTA) on
test 1s, the designated evaluation set of the AP17-OLR challenge.
As shown in Table 3 and 4, our system outperforms SOTA [41] in
both Cavg and EER. The system without applying back-end adapta-
tion does not perform as well as SOTA.

7. CONCLUSIONS

This paper addresses the problem of short-duration language recog-
nition (LR), especially when there is significant domain mismatch
between training and test data. In the front-end, speaker adversar-
ial multi-task learning (AMTL) is applied to learn speaker-invariant
multilingual BNFs. In the back-end, unsupervised PLDA adaptation
is adopted to alleviate the performance degradation caused by do-
main mismatch between training and test data. Through a demo ex-
periment, we show the adverse effect of domain mismatch and moti-
vate the necessity of domain adaptation. LR experiments are carried
out with AP17-OLR challenge dataset. Experimental results show
that both speaker AMTL and unsupervised PLDA adaptation con-
tribute significantly to performance improvement on short-duration
LR task. The effectiveness of PLDA adaptation is found to be in-
sensitive to the number of clusters. Our best system outperforms the
state-of-the-art system of AP17-OLR. In the future, we plan to apply
the proposed methods to DNN embedding-based LR frameworks.
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