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ABSTRACT
Typically, spoken language understanding (SLU) models are
trained on annotated data which are costly to gather. Aiming
to reduce data needs for bootstrapping a SLU system for a new
language, we present a simple but effective weight transfer
approach using data from another language. The approach
is evaluated with our promising multi-task SLU framework
developed towards different languages. We evaluate our ap-
proach on the ATIS and a real-world SLU dataset, showing
that i) our monolingual models outperform the state-of-the-art,
ii) we can reduce data amounts needed for bootstrapping a
SLU system for a new language greatly, and iii) while multi-
task training improves over separate training, different weight
transfer settings may work best for different SLU modules.

Index Terms— Spoken Language Understanding, Trans-
fer Learning

1. INTRODUCTION

Playing a crucial role in spoken dialogue systems, spoken
language understanding (SLU) typically involves two sub-
tasks of intent classification and slot filling. While the for-
mer identifies a speaker’s intent, the latter extracts semantic
constituents from the natural language query. Consider an
example from the ATIS data [1]: city [O where] [O is]
[B−airport code MCO]. The slot filling sub-task should clas-
sify “where” and “is” as O and MCO as B− airport code,
the airport code. Meanwhile, the intent classification sub-task
should identify city as the speaker’s intent.

Over the past few years, we have observed the success
of deep neural networks (DNN) in SLU (e.g. [1, 2, 3, 4]).
While traditionally separate models for intent detection and
slot filling have been explored, recently there has been a shift
towards joint models (e.g. [2, 3, 4]) to leverage the interaction
between the two tasks, which has been shown to improve
performance. Typically, DNN models for SLU are trained on
(large amounts of) annotated training data.

Due to the growing interest in devices making use of SLU
technology, such as Amazon Alexa or Google Home, an im-
portant goal is porting SLU models to new languages in a
quick and cost-efficient manner, i.e. without collecting large
amounts of annotated training data. Towards this goal, in this
paper we first present a flexible and modular multi-task SLU

framework that supports various deep learning architectures,
including recent techniques which have shown promising re-
sults on related tasks already. The framework provides an easy
way to select the best monolingual model for a given target
language and training data size, as the behavior of different
deep learning technique might differ accordingly [5].

We then explore leveraging data from another language,
assuming that a SLU system for this language is already avail-
able. In particular, we train a DNN on data from one language
and use its weights to initialize a DNN for another (target) lan-
guage – an approach also known as transfer learning. While
transfer learning has already been shown to be effective in sev-
eral tasks, including slot filling/named entity recognition [6, 7],
to the best of our knowledge it has not yet been explored for
joint intent detection and slot filling. Previous work on porting
SLU models has mainly explored using MT (e.g. [8, 9, 10]).
Recently, [11] presented a zero-shot and a bilingual training
approach, where the latter requires an intensive modification
to an existing SLU system, contrasting with our simple weight
transfer approach which can be easily applied to any existing
neural network based SLU system.

We evaluate our approach both on the ATIS benchmark
dataset and on a real-world SLU dataset. The main contribu-
tions of this paper are: i) we propose a flexible multi-task SLU
system, which outperforms the state of the art on ATIS, ii) we
explore different approaches for transferring weights, and iii)
we show that our approach allows large data reductions on a
real-world dataset while keeping performance.

2. MULTI-TASK SLU FRAMEWORK

As shown in Fig. 1, the framework divides model construction
into four phases: (I) input embedding, (II) sequential token
modelling, (III) slot filling, and (IV) intent classification.

Input Embedding The input embedding of a token consists
of three optional concatenated components: a word embed-
ding, a character embedding, and a gazetteer embedding. First,
the word embedding layer is either initialized by random vec-
tors or pre-trained word embeddings. Second, the character
embedding is learned by a 1-dimensional convolution neural
network (CNN) on the tokens’ character sequences. Third,
given a list of gazetteer types, where each type gi contains
a list of gazetteer names pij . Each token in an utterance is
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assigned an integer number as gazetteer feature. If a phrase
pij ∈ gi matches a sub-string of the utterance, the first word
and the remaining words of the matched string will receive
2 ∗ i− 1 and 2 ∗ i as the gazetteer features, respectively. If a
token does not occur in any matched sub-string, it will have
0 as gazetteer feature.1 After the concatenation, this phase
produces a fixed-dimensional real vector for each token.

Sequential Token Modeling As in the first phase, this phase
also produces a fixed-dimensional representation for each to-
ken, but by taking into account the contextual information
from other tokens in the utterance. We propose three different
architectures for this phase: Bi-directional RNN, Attention and
Bi-directional Attention. First, Fig. 2 shows the bi-directional
RNN architecture of the sequential token modeling module.
The RNN unit can be either a GRU or a highway LSTM [12]
with recurrent dropout [13] as proposed in [14]. The output of
the top-most RNN layer is the output of this module. Second,
the attention architecture of the sequential token modeling
module is shown in Fig. 3, which is similar to the well-known
multi-head attention applied in machine translation recently
[15]. Third, in Fig. 4, we propose an architecture to deal with a

1Note that if there are more than one match at a particular token, only the
longest match is considered.
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bi-directional attention mechanism which is the bi-block mul-
tidimensional attention [16] in our implementation. It consists
of two parallel sub-networks for forward and backward direc-
tions, in which each sub-network is similar to the attention
network as seen in Fig. 3.

Intent Classification The intent prediction’s architecture is
shown in Fig. 5. This phase consists of three main components:
a multi-dimensional attention layer, a feed-forward network
and a softmax layer. It first receives as inputs the contextual
representations of the tokens from the previous phase. Then,
a dimensional attention layer is applied on the tokens’ repre-
sentation to obtain a single representation for each utterance.
Finally, the utterance representations are passed to a stack of
a feed-forward network and a softmax layer to compute the
intent distribution. To improve the performance, we apply
label smoothing [17] in this phase.

Slot Filling Fig. 6 shows the slot filling architecture. It is
served by the sequential token representations as inputs. A
feed-forward network with a softmax or a linear conditional
random field (CRF) on top, is used to compute the slot distri-
butions. Label smoothing [17] can be applied with the softmax
in this phase.

Multi-Task System The intent prediction and slot filling
sub-tasks can be trained jointly or separately via the following
combined loss function: L = αiL̂i + αsL̂s, where αi, αs are
the weights indicating the importance of the intent prediction
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and slot filling, respectively. L̂i, L̂i are the normalized form
of Li and Ls respectively.

3. EXPERIMENTS

In the following, we will first describe our datasets and then
compare our SLU framework on the ATIS dataset to the state-
of-the-art. Subsequently, we explore transfer learning from
English to German both on ATIS and on a real-world dataset.

3.1. Datasets

The ATIS dataset [1] has been widely used in SLU research.
It contains audio recordings and corresponding annotated tran-
scriptions in English of people making flight reservations. In
our experiments, we use the version provided by [18], in which
the training, development and test sets contain 4.478, 500 and
893 utterances, respectively. For language transferring ex-
periments, we translated the test set, 463 random utterances
from the training set, and 144 random utterances from the
development set into German.

To evaluate our approach in a real-world scenario, we
extracted a random sample of 1M training data utterances
from a deployed large-scale English SLU system as well as
random samples of 10k and 20k from a German system for
training and 2k to create a development set. These utterances
are representative of user requests to voice-controlled devices
and cover a large number of different slots and intents.

We collect from our internal database the lists of city
names, airport names, airline names and airline codes to be
used as gazetteers.

For evaluation we use the standard metrics, i.e. F1, pre-
cision and recall for slot filling (computed using the CoNLL
2002 script) and accuracy for intent classification.

3.2. Monolingual models on benchmark ATIS

To compare our approach to the state-of-the-art, we first evalu-
ate our models on ATIS data; in this experiment we use GloVe
[19] 100-dimensional word embeddings. For character embed-
dings, characters are embedded in 8-dimensional embeddings.
The convolutions have window sizes of 3, 4, and 5 characters,
each consisting of 50 filters. The sequential token modeling
has the depth of 2 in all architectures. The hidden layers in the
RNN architecture are of size 300, while the number of heads in
the multi-head attention and number of blocks in the bi-block
multi-dimensional attention are set to 2 and 3, respectively.
The feed-forward networks in slot filling and intent classifi-
cation both consist of two layers of size 300. Dropout keep
probability is set to 0.9 in all the cases except for the residual
dropout in multi-head attention where it is set to 0.8. αi, αs

and the label smoothing rate are tuned on the development
set resulting in αi = 0.2, αs = 0.8 and label smoothing rate
= 0.1. We train our models using Adam optimizer with 0.001
as the learning rate. In line with previously reported results,
we do not use external knowledge (gazetteers) and average the

scores of 5 runs for each experiment. The results are presented
in Table 1. Overall, our models outperform the state-of-the-art.

Model Slot Intent
P R F1 Acc.

Hakkani-Tur et al., 2016 [20] 94.3 92.6
Liu and Lane, 2016 [2] 94.2 91.1
Goo et al., 2018 [18] 95.2 94.1
Highway:W 95.4 95.3 95.4 96.5
Highway:CNN 94.5 94.1 94.3 95.8
Highway:W+CNN 95.7 95.6 95.6 96.8
GRU:W+CNN 95.2 95.3 95.2 96.8
MulHeadAtt:W+CNN 93.7 94.3 94.0 97.0
Block-Dim. Att:W+CNN 93.9 94.6 94.3 96.8

Table 1. Different models in basic setting compared to the
state-of-the-art results borrowed from [18]. W–Word embed-
dings, CNN – CNN character embeddings

For intent detection gains are comparatively large, yielding
up to 97.0 in accuracy, which implies a gain of 2.9 absolute
compared to the previously best reported result of 94.1. For
slot filling, improvements are lower, but several of our mod-
els still outperform the state-of-the-art, yielding up to 95.6
in F1 compared to the previously reported 95.2. Due to best
performance on slot filling and competitive performance on
intent detection, we use Highway:W+CNN for more detailed
analyses and subsequent experiments.

To explore whether our multi-task system achieves better
results compared to training the intent detection and slot filling
models separately, we ran separate training. With an F1 of
95.6 vs 95.4 and an intent accuracy of 96.8 vs 95.9 for joint vs
separate training, respectively, in line with previously reported
results, joint training improves results.

Recall that our frameworks supports applying either a CRF
or softmax for slot filling. While a CRF is typically more
accurate, softmax is quicker. Since experiments on NLP tasks
imply that softmax can be similarly accurate as a CRF when
it’s applied together with label smoothing [17], we investigated
whether this also holds for our SLU framework. Results are
presented in Table 2.

Model Slot Intent
P R F1 Acc.

CRF 95.2 95.7 95.4 96.8
Softmax 95.2 95.5 95.3 96.6
Softmax + Lbl. Smoothing 95.7 95.6 95.6 96.8

Table 2. With vs. without label smoothing vs. CRF.
The CRF outperforms single softmax, but not softmax with

label smoothing. As a CRF is usually slower than softmax in
both training and prediction, we propose to use softmax and
label smoothing. Notice that speed is an important issue for
large-scale industry SLU systems.

To evaluate the effectiveness of using gazetteers, we
train our full model Highway:W+CNN+G using the internal
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gazetteers2 resulting in a slight improvement with 95.7 F1 for
slot filling and 96.8 Acc. for intent classification.

3.3. Cross-lingual transfer learning on ATIS

To explore transfer learning on ATIS, we train our High-
way:W+CNN+G model using fixed MUSE multilingual em-
beddings [21] on the English ATIS data (except for the samples
which are in parallel with our German ATIS) and select the
best weights using the German development data. The weights
are then used to initialize training on German ATIS data. Since
to the best of our knowledge transferring weights in a SLU
multi-task system has not yet been explored, it is unclear which
of the weights to transfer. Therefore, we explored different
weight transferring settings on the German ATIS test set. The
settings are listed in Table 3.

Setting Weights pre-trained by using English data
All All phases
Full-Slot All except slot filling
Full-Multidim All except multi-dimensional att.
Full-bi-LSTM All except sequential token modelling

Table 3. Weight transfer settings for German ATIS model.

To evaluate the gain from transferring weights, we created
a monolingual baseline, i.e. we trained a model solely on the
German ATIS data. To investigate whether performance is
reasonable on German, we additionally trained a model on the
parallel English data (i.e. the subset which was translated).
With an F1 of 90.5 vs 89.6 and an intent accuracy of 88.4 vs
87.8 for English vs German, respectively, performance appears
to be reasonable. Table 4 presents how the weight transfer set-
tings compare to the baseline model. The results show that

Model Slot Intent
P R F1 Acc.

Monolingual 90.6 88.6 89.6 87.8
All 92.4 92.3 92.3 89.0
Full-Slot 85.6 89.0 88.8 87.6
Full-Multidim 90.4 90.2 90.3 89.5
Full-bi-LSTM 87.8 88.3 88.0 85.8

Table 4. Monolingual model vs. weight transfer results on
German ATIS translations.
transferring weights can improve performance, depending on
which weights are transferred. Overall, taking gains in slot fill-
ing and intent detection together, the best setting is transferring
all weights, which improves results for F1 from 89.6 to 92.3
and for intent detection from 87.8 to 89.5. However, for intent
detection better results are achieved by full-multidim, yielding
an accuracy of 89.5. Notably though, in our framework the two
tasks are sharing only token representations and can be easily
separated even after joint training. Since we explore settings

2Gazetteers embeddings are of size 50.

where only small data amounts in the target language are avail-
able, it can be feasible to train one (potentially large-scale)
source model and transfer it twice using different approaches,
i.e. full and full-multidim, and then separate the modules to
use the intent detection module transferred with full-multidim
and the slot filling module transferred with full.

3.4. Cross-lingual transfer learning on real-world data

To explore potential data reductions in a real-world setting,
we trained baseline models on the 10k and 20k DE training
datasets. In addition, we trained a model on the 1M EN utter-
ances and transferred weights using the best-performing ap-
proach from the previous section, i.e. transferring all weights.
As word embeddings, we used the fixed MUSE multilingual
embeddings [21]. Results are presented in Table 5. The results

Data Model Slot Intent
P R F1 Acc.

10k DE Monoling. 77.1 73.6 75.3 87.9
10k DE, 1M EN Transfer 79.2 77.1 78.1 89.5
20k DE Monoling. 80.1 77.1 78.6 89.1
20k DE, 1M EN Transfer 82.6 80.5 81.5 90.4

Table 5. Transfer learning results on a real-world dataset.

show gains for transferring weights on both datasets and for
both intent detection and slot filling. For intent classification,
training on 10k DE data with transferring weights outperforms
training solely on 20k DE utterances (89.5 vs 89.1 in accu-
racy), despite using 50% less DE data, indicating that by using
cross-lingual transfer learning we can reduce data amounts
needed for bootstrapping a large-scale SLU system greatly.
While there are also gains for slot filling, training on 10k with
transfer learning does not outperform training a model solely
on 20k. More fine-grained analyses with different data sizes
are needed to draw more precise conclusions on potential data
reductions both for intent detection and slot filling, which we
leave for future work.

4. CONCLUSION

We presented a flexible and modular multi-task framework
for intent detection and slot filling. With the framework, we
compared different weight sharing settings for transferring
knowledge from English to German. We presented results on
the ATIS and a real-world dataset, showing that i) our models
outperform the state-of-the-art, ii) we can reduce data amounts
needed for bootstrapping a SLU system for a new language
greatly by utilizing data from another language, and iii) while
multi-task training improves over separate training, different
weight transfer settings work best for intent detection and slot
filling. Since our framework allows easy separation of modules
even after multi-task training, it can be easily used to transfer
with different settings and separate modules afterwards to get
modules with best performance for application.
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translation without parallel data,” arXiv preprint
arXiv:1710.04087, 2017.

5960


		2019-03-18T11:03:56-0500
	Preflight Ticket Signature




