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ABSTRACT
In this paper, we propose a convolutional encoder-decoder network
(CEDN) based approach for upper and lower Air-Tissue Boundary
(ATB) segmentation within vocal tract in real-time magnetic res-
onance imaging (rtMRI) video frames. The output images from
CEDN are processed using perimeter and moving average filters
to generate smooth contours representing ATBs. Experiments are
performed in both seen subject and unseen subject conditions to
examine the generalizability of the CEDN based approach. The
performance of the segmented ATBs is evaluated using Dynamic
Time Warping distance between the ground truth contours and pre-
dicted contours. The proposed approach is compared with three
baseline schemes - one grid-based unsupervised and two supervised
schemes. Experiments with 5779 rtMRI images from four subjects
show that the CEDN based approach performs better than the un-
supervised baseline scheme by 8.5% for seen subjects case whereas
it does better than the supervised baseline schemes only for lower
ATB. For unseen subjects case, the proposed approach performs
better than the supervised baseline schemes by 63.96%, 22.9% re-
spectively whereas it performs worse than the unsupervised baseline
scheme. However, the proposed approach outperforms the unsuper-
vised baseline scheme when a minimum of 30 images from unseen
subjects are used to adapt the trained CEDN model.

Index Terms— air-tissue boundary segmentation, real-time
magnetic resonance imaging video, convolutional encoder-decoder
network, dynamic time warping distance.

1. INTRODUCTION

The real-time magnetic resonance imaging (rtMRI) video of the
upper airway in the mid-sagittal plane during speech is an important
emerging tool for speech production research. While the vocal tract
movement can also be investigated using other methods like Elec-
tromagnetic articulography [2] Ultrasound [3] and X-ray [4], rtMRI
has an advantage of capturing a complete view of the entire vocal
tract including the pharyngeal structures in a safe and noninvasive
manner. The rtMRI video provides a spatio-temporal information of
speech articulators which is essential for modelling speech produc-
tion. Thus, the rtMRI video is important for analyzing the dynamics
of the vocal tract. The rtMRI data was used for understanding the
usage of articulators in achieving acoustic goals by comparing the
articulatory control of beatboxers [5]. A text-to-speech synthesis
system was developed by Toutios [6] using the predicted air-tissue
boundaries (ATBs) from the rtMRI video. The ATBs are the con-
tours separating the high pixel intensity tissue region and low pixel
intensity airway cavity region in the vocal tract. The ATB seg-
mentation is required to study the time evolution of the vocal tract
cross-sectional area [7] which forms the basis for many speech pro-
cessing applications. The rtMRI video has been used in the studies

that involve morphological structures of vocal tract [8] and analysis
of vocal tract movement [9]. These studies use ATB segmentation as
a pre-processing step. Hence, it is essential to have an accurate ATB
segmentation of rtMRI videos to study the articulators and dynamics
of the vocal tract [10, 11, 12, 13].
Several works in the past have addressed the problem of ATB seg-
mentation. For example, Toutios et al.[14] and Sorensen et al. [15]
used a factor analysis approach to predict the compact outline of the
vocal tract. Somandepalli et al. [16] proposed a semantic edge de-
tection based algorithm for ATB segmentation. A statistical method
was presented by Asadiabadi et al. using the appearance and shape
model of the vocal tract [17]. A data-driven approach using pixel
intensity [18] and a region of interest (ROI) based method [19] for
the ATB segmentation were proposed by Lammert et al. A boundary
intensity map was constructed using the multi-directional Sobel op-
erators in the rtMRI video frames in [20]. Many ATB segmentation
methods were proposed using the composite analysis grid line su-
perimposed on each rtMRI frame [21, 22, 23, 24]. The Maeda Grid
approach (MG) [21] achieved the best performance among all unsu-
pervised approaches. Advaith et al. proposed a Fisher discriminant
measure based supervised approach (SFDM) for ATB prediction
[25]. Valliappan et al. [26] used a semantic segmentation approach
with fully convolutional networks (SFCN).
In this work, we consider a supervised approach and propose a
deep learning based contour detection method for ATB segmen-
tation within the vocal tract. The proposed approach uses a con-
volutional encoder-decoder network (CEDN) [27] which provides
state-of-the-art performance compared to the other approaches such
as DeepEdge [28] and DeepContour [29]. Due to its supervised
nature, the proposed approach is robust to imaging artifacts and
grainy noise which pose challenges for naive low-level gradient-
based approaches. The CEDN model treats the ATB segmentation
as an image labelling problem where a pixel is classified as one if
the ATB traces through that pixel otherwise the pixel is classified
as zero. Due to high contrast (tissue to air cavity) on the ATBs,
the CEDN model learns the intensity variation from tissue to the
airway cavity region and labels the pixels accordingly. The output
images of the CEDN are further processed to get smooth ATBs. The
performance of the proposed approach is evaluated using Dynamic
Time Warping (DTW) [30] distance between the predicted ATBs
and the manually annotated ground truth ATBs. Lower DTW dis-
tance indicates a better performance. In this work, both seen and
unseen subject experiments are done to analyze the performance of
the proposed approach compared to the baseline schemes: SFCN,
SFDM and MG. In seen subject case, test data consists of the trained
subject’s images whereas in unseen subject case, test data consists
of images from a new subject not included in training. In the seen
subject experiments, the average DTW score of the predicted con-
tours using the proposed approach is found to be 8.5% lesser than
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that using the MG scheme whereas it performs better than SFDM
and SFCN approaches only for lower ATBs. Due to the supervised
nature, the SFCN and SFDM approaches also perform better than
the MG approach in seen subject experiments. However, they do
not yield satisfactory performance in unseen subject experiments
due to the mismatch in the vocal tract morphology of the training
and test subjects. Interestingly, in the unseen subject experiments,
the average DTW distance using CEDN based approach is 63.96%,
22.9% less than the SFCN and SFDM approaches respectively, al-
though it fails to perform better than MG scheme. However, when
the trained CEDN model is adapted using only 30 images from the
unseen subject, the proposed scheme outperforms the baseline MG
scheme. From the unseen subject experiment, it can be inferred that
the CEDN based approach has better generalizability compared to
SFDM and SFCN approaches.
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Fig. 1. (a,c) Sample rtMRI Images (b,d) Corresponding ATBs

2. DATASET

For all experiments in this paper, USC-TIMIT [31] corpus is used.
The USC-TIMIT is a rich database consisting of rtMRI videos of
the upper airway in the mid-sagittal plane. The rtMRI videos are
recorded at 23.18 frames/sec. The database contains the videos
of five female and five male subjects speaking 460 sentences from
MOCHA-TIMIT database [32]. The rtMRI video frames have a
spatial resolution of 68 × 68 pixels (each pixel having dimension
of 2.9mm × 2.9mm). A total of four subjects - two female (F1,
F2) and two male (M1, M2) - are used for the experiment in this
work. 16 videos (one for each sentence) from each of these sub-
jects are considered. The chosen 16 videos have 1463, 1272, 1642,
1402 frames from F1, F2, M1, M2 subjects respectively. The ATBs
were drawn manually in each rtMRI frame using a MATLAB based
graphical user interface (GUI). Using the GUI, three contours were
manually annotated in each rtMRI frame. Two such illustrative
frames with corresponding ATBs are shown in Figure 1. Along
with the contours, upper lip (UL), lower lip (LL), tongue base (TB),
velum tip (VEL) and glottis begin (GLTB) were also marked for
each frame. The three manually annotated complete ground truth
contours are denoted as C1, C2 and C3. As shown in Figure 1, C1

is a closed contour starting from upper lip (UL), which after passing
through hard palate, joins velum (VEL) and goes around the fixed
nasal tract. C2 is also a closed contour covering the jawline, lower
lip (LL), tongue blade and extends below the epiglottis. C3 covers
the pharyngeal wall.
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Fig. 2. Illustration of steps in the proposed CEDN based ATB seg-
mentation

3. PROPOSED CEDN BASED ATB SEGMENTATION

The steps of the proposed method of ATB segmentation are ex-
plained in Figure 2. The test rtMRI image is preprocessed before

ATB prediction. For upper and lower contours, two different CEDN
models are trained. The output probability images from the CEDN
models are processed to obtain binary images on which perimeter
filtering is applied. From the filtered binary images, ATBs within
vocal tract are predicted.

3.1. Preprocessing

The rtMRI frames are enhanced using the image processing tech-
nique used in the work by Kim et al. [21] to reduce the image ar-
tifacts for better performance of the ATB segmentation. Figure 2
shows example of an enhanced rtMRI frame after the preprocessing
block.
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Fig. 3. Block diagram of CEDN architecture

3.2. CEDN based contour prediction

In this paper, we have used CEDN which is a deep convolutional
neural network with asymmetric encoder-decoder architecture [27].
The CEDN model provides state-of-the-art performance for object
contour detection compared to DeepEdge [28] and DeepContour
[29]. The CEDN model generalizes better to unseen object classes
than the DeepEdge and DeepContour. Due to having less number
of deconvolutional layers in the decoder network, CEDN produces
accurate label boundaries with limited number of training images.
And CEDN preserves the spatial information by generating the
output image of dimension identical to that of the input image di-
mension. Figure 3 shows the encoder-decoder architecture of the
CEDN network used in this work. Typically in CEDN [27], the
encoder weights are initialized with VGG-16 weights [33] and are
fixed during training. The rtMRI images are different from the
image dataset used in VGG-16 training. Thus, in this work, both
encoder and decoder weights of the CEDN model are learned dur-
ing training without utilizing VGG-16 weights as encoder weights.
Two CEDN models are trained for upper and lower contours C1,
C2 separately using the preprocessed input images and the ground
truth binary images which are obtained from the manually annotated
ground truth contours (as in Figure 4 b, d). The trained CEDN
model generates a probability image for a test rtMRI image. The
last layer of the CEDN network is a sigmoid layer which generates
the probability image in which the pixel value ranges from zero to
one. A pixel value of one indicates the most probable ATB pixel and
zero indicates the least probable ATB pixel. Figure 4 c, e show the
upper and lower probability images (upper∗ and lower∗) for a test
rtMRI image.

(a) (b) (c) (e)(d)

Fig. 4. (a) Manually annotated ground truth contours (b,d) Ground
truth binary images (c,e) Probability images from CEDN model for
upper and lower contour respectively
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3.3. ATB Prediction

This step generates the upper and lower ATBs within the vocal tract
from upper∗ and lower∗ images respectively.

3.3.1. Binary Image Generation and Perimeter Filtering

The upper∗ and lower∗ images are thresholded to obtain the binary
images as well as a fixed contour representing predicted C3. The best
threshold value is decided based on the performance on the valida-
tion data. The images obtained by thresholding upper∗ and lower∗

are denoted as upper∗b and lower∗b respectively. The upper∗b and
lower∗b images are then passed through a perimeter filter which gen-
erates filtered binary images that contain only the perimeter pixels
of the detected closed ATB in the input binary images. A pixel is
considered to be part of the perimeter if the pixel is non-zero and it
is connected to at least one zero-valued pixel with the given connec-
tivity. In this work, 4-connectivity is considered which means that
two adjoining pixels are part of the ATB if both the pixels are con-
nected along the horizontal and vertical directions and their values
are one. The output images of the perimeter filter are denoted as
upper∗p and lower∗p for the given input binary images upper∗b and
lower∗b respectively. It should be noted that, as contour C3 does not
change across rtMRI frames, a fixed contour is used as predicted C3

in all frames. Figure 5 shows upper∗b , lower∗b , upper∗p and lower∗p
images for a sample rtMRI image.

(a) (b) (c) (d)

Fig. 5. (a,c) Binary images after thresholding (b,d) Output images
from perimeter filter for upper and lower contours respectively

3.3.2. Within Vocal Tract ATB Prediction

This step predicts ATBs within vocal tract from upper∗p and lower∗p
images as well as a fixed contour representing predicted C3. For
obtaining the contour coordinates from upper∗p and lower∗p , the in-
dices of the pixels with value one are considered and are sorted in
the clockwise direction. The obtained ATBs are pruned to predict the
ATBs within the vocal tract following the contour pruning method as
described in the SFDM approach [25]. The pruned ATBs are jagged
because of the binary thresholding and perimeter filtering. To obtain
the smooth contours, the pruned ATBs are passed through a moving
average filter with size q×q (optimum value of q ranges from 3 to 9).
The value of q is decided based on the performance on the validation
data set. The contours obtained after moving average smoothing are
denoted as Ĉp

1 and Ĉp
2 respectively.

4. EXPERIMENTS AND RESULTS
4.1. Experimental Setup

In this work, experiments are performed in two conditions: 1) seen
subject condition 2) unseen subject condition. The unseen subject
experiments are done to analyze the generalizability of the CEDN,
SFCN and SFDM approaches. The ground truth binary images for
both experiments are generated from the manually annotated ground
truth contours. In the ground truth binary image, a pixel is labelled
as one if the manually annotated contour traverses through that pixel
otherwise the pixel is labelled as zero. Figure 4(b) and 4(d) show the
upper and lower ground truth binary images (upper and lower) for
a typical rtMRI image respectively. Experimental setups for the seen

and unseen subject conditions are explained below.
Seen subject: In this experiment, a CEDN model is trained and val-
idated using four-fold cross-validation by choosing the videos in a
round robin fashion. In each fold, for training the CEDN model, a
total of 32 videos comprising 8 videos from each subject (F1, F2,
M1, and M2) are considered. For validating, a total of 16 videos
comprising 4 videos from each subject are considered. And for test-
ing, a total of 16 videos comprising 4 videos from each subject are
considered. Each fold, on average, contains ∼2900 training images,
∼1443 images in both validation and test sets from all four subjects.
The CEDN model is trained for a maximum of 30 epochs by impos-
ing early stopping condition based on the validation loss.
Unseen subject: In this experiment, the CEDN model is trained and
tested using four-fold cross-validation by choosing the subjects (F1,
F2, M1, M2) in a round robin fashion. In each fold, for training the
CEDN model, a total of 48 videos from 3 subjects are considered.
For testing, 16 videos from one subject are considered. Each fold,
on average, consists of ∼4334 and ∼1444 images in training and
test sets respectively. The CEDN model is trained for 50 epochs.
Adaptation using unseen subject’s data: To find out the minimum
number of images from the unseen subject required to achieve better
performance than the MG scheme, in each fold, the trained model
is adapted with P many frames of the unseen subject. P is varied
over the following values - 0, 10, 20, 30. The weights of the last five
deconvolutional layers of the CEDN model are only learned during
adaptation while other layers’ weights are kept fixed. To select the
adaptation images, the frames from the unseen subject are split into
two halves. From the first part, the adaptation images are considered
from a set of 100 images and remaining images are used as valida-
tion data. The second part is used as the test data.
Performance metric: The performance of the proposed approach is
evaluated by finding the DTW distance [30] between the predicted
contours and the ground truth contours. The DTW distance has a
unit of pixel. In order to obtain the evaluations for Ĉp

1 and Ĉp
2 con-

tours, the complete ground truth contours C1 and C2 are pruned us-
ing a method followed in SFDM approach [25] which are denoted
as Cp

1 and Cp
2 respectively. The DTW distance between Cp

1 and Ĉp
1

(D(Cp
1 , Ĉ

p
1 )) and between Cp

2 and Ĉp
2 (D(Cp

2 , Ĉ
p
2 )) are computed

following the definition used in the work by Advaith et al. [25].
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Fig. 6. Bar plot showing DTW distance using CEDN approach for
varying number of adaptation images. Errorbar indicates the std.
Blue horizontal line indicates the DTW distance using MG scheme.

4.2. Results and Discussions

Table 1 shows the average (± standard deviation (std)) ofD(Cp
1 , Ĉ

p
1 )

and D(Cp
2 , Ĉ

p
2 ) using the MG, SFDM, SFCN and CEDN ap-

proaches for the seen subject experiments. Table 2 shows simi-
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Table 1. DTW distance in pixel (average ± std) of upper contours and lower contours using MG, SFDM, SFCN and CEDN for the seen
subject experiment (blue colour indicates the least DTW distance)

Sub Upper Contour Lower Contour
MG SFDM SFCN CEDN MG SFDM SFCN CEDN

F1 1.02± 0.19 0.94± 0.17 0.91± 0.21 0.95± 0.16 1.21± 0.21 1.10± 0.24 1.00± 0.25 0.94± 0.22
F2 1.24± 0.29 1.16± 0.19 1.08± 0.19 1.13± 0.20 1.28± 0.27 1.24± 0.25 1.13± 0.31 1.12± 0.24
M1 1.10± 0.20 1.11± 0.20 1.02± 0.20 1.14± 0.23 1.26± 0.60 1.17± 0.26 1.17± 0.25 1.16± 0.23
M2 1.19± 0.24 1.11± 0.23 1.09± 0.21 1.17± 0.22 1.35± 0.30 1.16± 0.41 1.21± 0.23 1.14± 0.27
Avg 1.13± 0.23 1.08± 0.20 1.03± 0.20 1.10± 0.20 1.27± 0.36 1.14± 0.29 1.13± 0.26 1.09± 0.24

Table 2. DTW distance in pixel (average ± std) of upper contours and lower contours using MG, SFDM, SFCN and CEDN for the unseen
subject experiment (blue and green colours indicate first and second least DTW distances respectively)

Sub Upper Contour Lower Contour
MG SFDM SFCN CEDN MG SFDM SFCN CEDN

F1 1.02± 0.19 1.54± 0.58 3.32± 0.40 1.28± 0.29 1.21± 0.21 1.78± 0.43 15.9± 0.98 1.53± 0.26
F2 1.24± 0.29 2.28± 0.42 1.85± 0.31 1.69± 0.24 1.28± 0.27 2.60± 0.68 15.4± 1.31 1.76± 0.37
M1 1.10± 0.20 1.68± 0.48 4.01± 0.41 2.32± 0.47 1.26± 0.60 2.17± 0.51 9.85± 0.83 1.99± 0.40
M2 1.19± 0.24 4.00± 0.39 1.67± 0.27 1.20± 0.19 1.35± 0.30 1.75± 1.36 12.7± 0.85 1.59± 0.23
Avg 1.13± 0.23 2.34± 0.47 2.79± 0.35 1.65± 0.30 1.27± 0.36 2.06± 0.78 13.3± 0.98 1.72± 0.32

lar results for the unseen subject experiments. From Table 1, it
is observed that the CEDN approach results in less average DTW
distance compared to MG, SFDM and SFCN approaches for lower
contour whereas, for the upper contour, the CEDN approach results
in less average DTW distance compared to MG scheme only but
doesn’t perform better than the SFDM and SFCN approaches. The
average DTW distance using CEDN approach is 8.5% lesser than
the MG scheme for both upper and lower contours. From Table 2,
it is observed that the average DTW distance using CEDN approach
is 63.96%, 22.9% less than the SFCN and SFDM approaches but
doesn’t perform better than MG scheme.

Table 3. DTW distance in pixel (average ± std) using MG and
CEDN (in unseen subject experiments with 30 adaptation images)
for test data (blue colour indicates the least DTW distance)

Sub Upper Contour Lower Contour
MG CEDN MG CEDN

F1 1.03± 0.27 1.02± 0.20 1.04± 0.21 1.00± 0.21
F2 1.20± 0.24 1.16± 0.22 1.32± 0.25 1.21± 0.25
M1 1.23± 0.19 1.21± 0.24 1.19± 0.53 1.44± 0.26
M2 1.20± 0.24 1.18± 0.20 1.30± 0.26 1.00± 0.14
Avg 1.17± 0.23 1.14± 0.20 1.21± 1.21 1.17± 0.21

During the CEDN model adaptation using unseen subject’s data,
DTW distance on the validation data (as explained in 4.1) is com-
puted using 0, 10, 20, and 30 adaptation images. These DTW dis-
tances are shown in Fig. 6 for all four subjects separately for upper
and lower ATBs. For upper contour, the average (± std) DTW scores
for validation data across all subjects using 20 and 30 adaptation im-
ages are 1.24 ± 0.23 and 1.14 ± 0.22 respectively. Similarly for
lower contour, the average (± std) DTW scores for validation data
across all subjects using 20 and 30 adaptation images are 1.30±0.29
and 1.18 ± 0.23 respectively. Using MG scheme, the average (±
std) DTW distances are 1.19± 0.26 and 1.23± 0.34 for upper and
lower contours respectively. As the CEDN models yield better vali-
dation data performance with 30 adaptation images, the CEDN mod-
els adapted with 30 unseen images are considered for evaluation on
the test data. The average (±std) DTW scores on the test data are
provided in Table 3. From Table 3, it is clear that the adapted CEDN
models perform better than MG scheme even on the test set of the

unseen subject. The average (± std) DTW distances on test data us-
ing SFDM approach with 30 adaptation images are 1.15± 0.22 and
1.81 ± 1.00 for upper and lower contours respectively. Thus, the
SFDM approach with 30 adaptation images performs better than the
MG scheme for upper contour (while still worse than CEDN) but it
fails to perform better than the MG scheme for lower contour. Un-
like CEDN, we observe that SFCN with 30 adaptation images does
not perform better than MG scheme.
The superior performance of the proposed CEDN based approach
could be due to the following reasons: 1) Because of its supervised
nature, the CEDN approach predicts the reliable contours by over-
coming the imaging artifacts and grainy noise. 2) The light decoder
(less number of deconvolutional layers) of the CEDN and learning
both encoder and decoder weights during training help in predicting
accurate boundaries from the limited number of training images in
both unseen and seen subject experiments. 3) The perimeter filter
used in the post-processing helps in getting precise boundary pixels
from the binary thresholded image. From the experimental results,
it is observed that the CEDN approach does not perform better in
some cases for upper contour predictions. The CEDN model is of-
ten found to predict a cluster of points at the velum region instead
of predicting a smooth boundary. Due to this, in the contour prun-
ing step, velum point is not detected properly leading to inaccurate
upper ATBs in some cases.

5. CONCLUSION
In this paper, a supervised approach using CEDN model is proposed
for the ATB segmentation. The proposed approach performs bet-
ter than the baseline MG scheme in the seen subject experiment. In
the unseen subject condition, the approach achieves better perfor-
mance than the MG scheme with only 30 unseen subject’s images
as adaptation data. The proposed method has better generalization
ability compared to the other supervised approaches like SFCN and
SFDM. The performance of the proposed approach can be improved
further by using adaptive thresholding to generate binary images
from CEDN output probability images. In adaptive thresholding,
the threshold value for a pixel in an image is decided by statistically
examining the intensity values of the local neighbourhood of that
pixel.
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