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ABSTRACT

Traditionally, automatic speech recognition (ASR) systems are
trained on acoustic representations of neutral speech. As a result,
their performance degrades when tested with whispered speech. In
this work, we explore the robustness of articulatory features in ASR
of neutral and whispered speech. We use acoustic, articulatory, and
integrated acoustic and articulatory feature vectors in matched and
mismatched train-test cases. The results suggest that the articula-
tory data is useful in ASR of both neutral and whispered speech,
especially in the mismatched train-test cases. When we concate-
nate acoustic and articulatory feature vectors and deploy it to the
mismatched train-test case where the model is trained with neutral
speech and tested with whispered speech, a relative improvement in
phone error rate of 27.2% is observed compared to when only acous-
tic features are used. This suggests that articulatory data contains
information complementary to acoustic representations. A phone
specific recognition error is also presented which illustrates phones
where adding articulatory information gives maximum benefit.

Index Terms— Automatic speech recognition, neutral speech,
whispered speech, articulatory data

1. INTRODUCTION

With advancements in deep neural networks (DNN), modern auto-
matic speech recognition (ASR) systems have shown state-of-the-art
performances in acoustically matched train-test cases. However,
ASR performance is often affected by mismatch in train-test cases
due to various factors including surrounding environment (noise,
reverberation, loudness, etc.) [1], speech rate, accent, and dialect
variations [2]. Further, speech can also be produced with differ-
ent modality, such as whispered speech, in contrast to normally
phonated (neutral) speech. Examples of such scenarios are private
conversations, and when the user has a pathological condition [3, 4].
Without large amounts of whispered training data in addition to neu-
tral speech, it is challenging to train an ASR system that is robust
enough to recognize both neutral and whispered speech [5].

The challenges are due to the differences in acoustic character-
istics and articulation between neutral and whispered speech. Whis-
pered speech lacks vocal-fold vibrations, and hence, pitch [6, 7]. It
has noise-like characteristics and lower signal-to-noise ratio (SNR)
than neutral speech [8]. There is also a shift of formants in low fre-
quencies, compared to those in neutral speech [9, 10]. This results
in a mismatch in acoustic characteristics between neutral and whis-
pered speech. Therefore, ASR systems trained with acoustic repre-
sentations of neutral speech do not perform well when tested with
whispered speech.

Previous works have shown that articulatory data is useful for
ASR [11, 12, 13, 14], particularly when there is background noise
[15], in conversational speech [16], and when the speaker has a
pathological condition [17]. Results reported by Szu-Chen Jou et al.
[18] suggest that having articulatory feature representation helps in
the recognition of whispered speech. However, the articulatory fea-
tures were derived using IPA phonological features and then adapted,
rather than measured directly, which could have limited the evalua-
tion procedure [18]. In this work, we conduct a study on the ro-
bustness of articulatory data for the ASR of neutral and whispered
speech in matched and mismatched train-test cases, with direct mea-
surement of articulatory data using Electromagnetic Articulography
(EMA) [19]. Table 1 shows the definition of the different matched
and mismatched train-test cases considered in this study. While
Beiming et al. [20] used articulatory movement data from a single
patient with a surgically reconstructed larynx for automatic whis-
pered speech recognition, there has been no systematic investigation
with directly measured articulatory data from multiple subjects in
ASR of whispered speech.

It has been found that there are some differences in the articu-
lation of neutral and whispered speech [21, 22, 23, 24]. However,
we believe that the relative invariance of articulatory data between
neutral and whispered speech, compared to acoustic representations
[15], could be exploited to improve the ASR performance in the
mismatched train-test cases by using articulatory data in addition to
acoustic features. We present the results when three different types
of feature vectors are used for ASR, for all four train-test cases. The
three types of feature vectors are - (1) acoustic features in the form
of mel frequency cepstrum coefficients (MFCCs), (2) articulatory
features (AFs), and (3) integrated acoustic and articulatory features
(AF+MFCCs). Experiments are performed with ∼8 hours of paral-
lel acoustic and articulatory data from neutral and whispered speech
in matched and mismatched train-test cases as listed in Table 1.

The rest of the paper is organized as follows: Section 2 contains
details regarding data collection. Section 3 is divided into two sub-
sections – section 3.1 contains specifics of the experimental setup

Test
Neutral Whispered

Train
Neutral Matched

(Neu-Neu)
Mismatched
(Neu-Whi)

Whispered Mismatched
(Whi-Neu)

Matched
(Whi-Whi)

Table 1: Matched and mismatched train-test cases for ASR in this
study.
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Fig. 1: A diagram showing placement of sensors which record artic-
ulatory movements in the mid-sagittal plane [24]

and section 3.2 contains discussions on the results obtained and an
example to illustrate the benefits of articulatory data at the phone
level. Section 4 contains the conclusion of the paper and scope for
further study.

2. DATASET

Parallel acoustic and articulatory data were recorded for neutral and
whispered speech. 10 subjects comprising 5 male and 5 female sub-
jects participated in the data collection, in an age group of 20–28
years. None of the subjects were reported to have speech disorders.
An informed consent was obtained from all subjects before collect-
ing the data. The data collection was approved by the ethics com-
mittee of the Indian Institute of Science (IISc), Bangalore.

Articulatory movements were recorded with AG501, an Electro-
magnetic articulograph [25], which is a state-of-the-art instrument
for recording articulatory movements. In this study, eight sensors
were placed at different articulators and the sampling rate was set to
250Hz. Two sensors were attached behind the ears and were used
for head motion correction. The rest of the six sensors were used
to record articulatory movements in the midsagittal plane. Three of
these sensors were placed outside the oral cavity, on the upper lip
(UL), lower lip (LL), and jaw (Jaw). The remaining three were
placed inside the oral cavity on the tongue tip (TT ), tongue body
(TB), and tongue dorsum (TD), following the guidelines provided
in [26]. A diagram indicating the placement of sensors is shown
in Fig. 1. Movement of each sensor in the midsaggital plane was
captured using X and Y coordinates of the positional data provided
by the AG501. From these X and Y coordinates of six sensors,
we obtained a 12 dimensional fecture vector with elements denoted
by ULx, ULy , LLx, LLy , Jawx, Jawy , TTx, TTy , TBx, TBy ,
TDx, and TDy .

The 460 phonetically balanced English sentences from the
MOCHA-TIMIT dataset [27] were chosen as stimuli for all the
recordings. The phonetic transcription of the dataset consists of 39
ARPABET symbols used for evaluation of models on the TIMIT
dataset [28], along with [td], [kd], [pd], [dd], [gd], [bd] which denote
unreleased stops, and [ts], which is a voiceless alveolar affricate. To
avoid erroneous pronunciation, and insertion or deletion of words,
the subjects were familiarized with the sentences prior to recording.
The data was collected in an AG501 recording facility at IISc, Ban-
galore. Subjects were given ample time to accustom themselves to
the presence of sensors while they speak. This was done by convers-
ing with the subjects for some time, and making them comfortable
reading sentences. Audio was recorded with a t.bone EM9600 shot-
gun unidirectional electret condenser microphone [29] at a sampling
frequency of 48 kHz. Acoustic and articulatory data were recorded
simultaneously for every utterance. There was careful scrutiny dur-

ing the recording, and the subject was asked to repeat the utterance
in case of any error or ambiguity. The recording time for a single
subject was ∼2 hours. Due to the lengthy recording duration, the
recordings of neutral speech and whispered speech were done in two
separate sessions for the convenience of the subjects. As whispered
speech has low intensity, we used sound pressure level calibration
during whispered speech recordings [30]. A single tone of known
intensity and a TES-1350A sound level meter were used to measure
the sound pressure levels for every 100 sentences. Care was taken to
place the sensors in almost identical positions in the two recording
sessions. Subjects were allowed to take a break in the middle of the
recording as many times as they wanted. In the event that the sensors
came off the articulators, proper care was taken to re-glue them in
the identical position. In order to avoid error due to mismatch in
the location after re-glueing, average sensor location was subtracted
separately for each utterance in the data processing step. The total
duration of the recorded data after the removal of silences before and
after every sentence turned out to be 224 minutes and 238 minutes
for neutral and whispered speech, respectively. Mean and standard
deviation (SD) of duration of recorded data per subject was 22.43
(±2.63) minutes for neutral speech and 23.85 (±2.42) minutes for
whispered speech.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

The speech recorded using AG501 was down-sampled to 16 kHz.
Then, acoustic features comprising 13 MFCCs were computed us-
ing a window size of 20ms with a frame shift of 10ms. This was
followed by cepstral mean subtraction and variance normalization
[31]. To avoid high-frequency noise due to EMA measurement error,
the articulatory data was low-pass filtered with a cut-off frequency
of 25Hz, as most of the energy of the articulatory movements of
all chosen articulators lies below 25Hz [32]. The articulatory data
was downsampled to 100Hz so that the feature vector is frame syn-
chronized with the MFCC feature vector. Motivated by articulatory
phonology [33], from the articulatory trajectories of lips, we de-
rived lip protrusion (LPro) and lip aperture (LA) as two articulatory
features [34]. LPro captures the horizontal distance of lips from
front teeth, obtained from horizontal trajectories of ULx and LLx

as LPro = (ULx + LLx)/2. LA indicates the vertical distance
between upper lip and lower lip, LA = |ULy − LLy| /2. LPro
and LA along with Jawx, Jawy , TTx, TTy , TBx, TBy , TDx,
and TDy result in a 10-dimensional AF vector. As the average posi-
tion of articulators could change across utterances, we subtracted the
mean and divided by SD for each dimension of the AF vector within
each utterance. On concatenating AF and MFCC feature vectors, we
obtained a 23-dimensional AF+MFCC feature vector.

The acoustic model used was based on the model proposed by
Veselý et al. for the TIMIT dataset [35]. Our model was built using
the Kaldi Speech Recognition toolkit. The DNN consisted of an
input layer, six hidden layers, and an output layer. The input layer,
hidden layers, and output layer had dimensions of 440, 2048, and
3370, respectively. Neurons in all layers except the output layer used
the sigmoid activation function. The neurons in the output layer used
the softmax activation function. The DNN was trained with LDA-
MLLT-fMLLR features [36].

All the experiments were performed using a 10-fold cross-
validation setup. The 460 sentences spoken by each speaker were
divided into 10 sets containing the same number of sentences, out of
which eight sets were used for training, one for validation, and one
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Fig. 2: Neu-Neu train-test case: phones arranged in decreasing order of improvement after the addition of AFs to MFCCs.

Fig. 3: Whi-Whi train-test case: phones arranged in decreasing order of improvement after the addition of AFs to MFCCs.

Train-test case AF MFCC AF+MFCC
Neu-Neu 47.0 (±1.22) 29.3 (±0.81) 27.7 (±1.21)
Whi-Whi 50.6 (±0.81) 42.9 (±0.82) 37.7 (±1.07)
Neu-Whi 55.0 (±0.73) 66.3 (±1.10) 48.3 (±1.11)
Whi-Neu 51.2 (±0.83) 46.1 (±0.80) 37.8 (±0.85)

Table 2: PER (in %) for all train-test cases. Values in brackets indi-
cate SD across 10 folds (in %)

for testing in a round-robin fashion. The mean durations of training,
testing, and validation sets were 190.8, 23.85, and 23.85 minutes, re-
spectively, for neutral speech, and 179.44, 22.43, and 22.43 minutes,
respectively, for whispered speech. The performance of the ASR
system for all matched and mismatched cases have been reported
as the phone error rate (PER) averaged across the ten folds, along
with its SD. As the recorded dataset was not large enough (2015
unique words) to build a word-level language model (LM), we built
a phone-level bigram LM. For measuring the performance of the
models on individual phones, we computed the phone recognition
error. It is computed as: Recognition Error % =(

Substitution Errors + Insertion Errors + Deletion Errors
Total number of occurrences of the phone across all folds

)
×100,

where substitution, insertion, and deletion errors are summed across
all folds for the phone in consideration. PER and recognition errors
are reported with respect to the 46 unique phones in the dataset.

3.2. Results and Discussion

Matched train-test case: The first two rows of Table 2 report the PER
of matched train-test cases. When MFCCs were used as features,
there was a relative increase in PER of 46.4% in Whi-Whi compared
to Neu-Neu. This was predominantly due to lack of voicing cues in
whispered speech [5]. When only AFs were used as a feature vector,

there was an increase in PER compared to the MFCCs case in both
matched train-test cases. We also observed that there was a relative
increase of 7.6% in PER from the Neu-Neu to Whi-Whi train-test
case when only the AF vector was used. We are unclear about the
aspects that could have led to the drop in AF performance in Whi-
Whi compared to Neu-Neu, which requires further investigation. In
the case where AF+MFCCs were used, we observed a relative reduc-
tion in PER for both Neu-Neu (5.4%) and Whi-Whi (12.1%) cases,
compared to the MFCC feature vector. Also, the relative increase in
PER from the Neu-Neu to Whi-Whi case was 36.1%, which is 10.3%
less than the corresponding increase in PER in the MFCC case.

We sorted phones in descending order with respect to the re-
duction in recognition error from the AF+MFCCs to the MFCCs
case. The recognition errors of ten phones at the top (most reduction
in PER) and bottom (least reduction in PER) of this sorted list are
shown in Fig. 2 (Neu-Neu) and Fig. 3 (Whi-Whi) for the different
feature vectors. If the recognition error reduced significantly after
the addition of AFs, it means that substantial information about that
phone was encoded in AFs that was not present in MFCCs.

Mismatched train-test case: The last two rows of Table 2 report
the PER of mismatched train-test cases. While comparing the perfor-
mance degradation of the mismatched cases to their matched counter
parts, we observed that there was a relative increase in PER of 57.3%
(Neu-Neu vs Whi-Neu) and 54.5% (Whi-Whi vs Neu-Whi) when
the MFCC feature vector was used. When AFs were used, we ob-
served that the PER increased relatively by 8.0% in both Neu-Neu vs
Whi-Neu and Whi-Whi vs Neu-Whi cases. This drop could be due
to differences in articulation between neutral and whispered speech
[21, 22, 23, 24]. Note that there was no severe degradation in PER
due to mismatch of train-test cases when AFs were used (8.0%),
compared to MFCCs (∼55.9%). This could be because variance in
features across the modes of speech is lesser in articulatory space
compared to acoustic space [15]. After concatenating AFs with
MFCCs, we observed that PER is reduced compared to the MFCC

5938



Fig. 4: Neu-Whi train-test case: phones arranged in decreasing order of improvement after the addition of AFs to MFCCs.

Fig. 5: Whi-Neu train-test case: phones arranged in decreasing order of improvement after the addition of AFs to MFCCs.

Substitution AF MFCC AF+MFCC
[m] ->[n] 41 148 32
[ey] ->[ih] 192 192 151
[w] ->[f ] 212 207 132

Table 3: Count of few phone substitutions for Whi-Whi case using
models trained on MFCC, AF, and AF+MFCC.

case. In particular, we observed a relative improvement of 27.2% in
the Neu-Whi and 18.0% in the Whi-Neu case. We attribute this im-
provement to AFs capturing a significant amount of information that
was independent of the mode of speech. This result could help ASR
models, which are often trained only on neutral speech, to recognize
whispered speech more accurately.

Fig. 4 and Fig. 5 show plots similar to Fig. 2 and Fig. 3 for
Neu-Whi and Whi-Neu cases respectively. From Fig. 4, we see that
there was complementary information being captured by AFs that
reduced the recognition error for all phones except [hh] in the Neu-
Whi case. The recognition errors dropped by more than 30% for all
top ten phones (most improvement) in Fig. 4 after AFs were added
to MFCCs, compared to using just MFCCs.

To illustrate the benefit of AFs at the phone level, we present few
examples of phone substitutions in Table 3 for the Whi-Whi case.
From Table 3, it is clear that the number of substitutions of [m] with
[n] dropped from 148 (MFCC) to 32 (AF+MFCC). This could be be-
cause articulatory differences between whispered [m] and [n], such
as place of articulation [37], were captured by the AFs. Similarly, the
number of substitutions of [ey] with [ih] dropped from 192 (MFCC)
to 151 (MFCC+AF). This drop possibly occurred due to AFs cap-
turing the change of positions of speech articulators during the glide
between the two vowel sounds [eh] and [ih] in the diphthong [ey]
[38], which could have complemented the information present in the
MFCCs. The number of substitutions of [w] with [f ] dropped by 75

from the MFCC to AF+MFCC case. Due to the absence of voicing
in whispered speech, the difference in acoustics between [w] and [f ]
may have become smaller. But, their distinct articulatory representa-
tions [38] could have helped the model to differentiate between them
better.

4. CONCLUSIONS

A study was conducted to ascertain the usefulness of articulatory in-
formation in ASR of neutral and whispered speech. PER was found
to vary less with mismatch in train-test cases when AFs alone were
used, compared to MFCCs. This suggests that AFs are useful for
ASR irrespective of the mode of speech. When AFs were concate-
nated with MFCCs to obtain an augmented feature vector, we found
marginal improvements in PER in the matched train-test cases when
compared to using only MFCCs. From recognition errors of individ-
ual phones, we observed that AFs carry information that is comple-
mentary to MFCCs. This result was very prominent in the Neu-Whi
case where MFCC failed to capture significant information that was
independent of the mode of speech. There was a substantial reduc-
tion in relative PER (27.2%) after the addition of AFs to MFCCs in
the Neu-Whi case. This result could potentially help traditional ASR
systems recognize whispered speech more accurately. Future work
would involve conducting experiments similar to those done in this
paper using articulatory data predicted from acoustic-to-articulatory
inversion (AAI) [24], as opposed to directly measured articulatory
data which is not always practical. We reported the empirical eval-
uation results for the individual phone recognition errors, however,
further investigation is required to ascertain the nature of the com-
plementary information carried by AFs, and to provide physiological
explanations.
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