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ABSTRACT

Recent techniques employ end-to-end systems to learn relevant
features for several speech related applications, including speech
recognition, and speaker verification. In this work, we focus on
the task of acoustic-to-articulatory inversion (AAI) for which we
propose an end-to-end system that comprises a convolution neural
network (CNN) and a bidirectional long short-term memory network
(BLSTM). The aim of this work is to understand the nature of the
features learnt by the end-to-end model and the importance of pre-
emphasis in representation learning for AAI. Further, we propose a
subject adaptation scheme to overcome the limitations of the avail-
ability of parallel acoustic-articulatory data to train an end-to-end
AAI system. The AAI performance is evaluated with ∼3.19 hours
of acoustic-articulatory data collected from 8 subjects. Experiments
reveal that, the frequency response of filters learnt by the CNN in
the proposed system resembles those of the mel-scale, and hence,
the performance of the proposed system (RMSE=1.47mm) is on
par with that using mel-frequency cepstral coefficients (1.42mm)
as features. Using pre-emphasis reduces RMSE by 0.13mm, and
also the proposed adaptation scheme performs better than a subject-
specific AAI model by an RMSE of 0.21mm despite of limited
acoustic-articulatory data from a subject.

Index Terms— CNN, BLSTM, acoustic-to-articulatory inver-
sion, electromagnetic articulograph

1. INTRODUCTION

Speech is produced as a result of different temporally overlapping
gestures of speech articulators (namely lips, tongue tip, tongue body,
tongue dorsum, velum, and larynx) each of which regulates constric-
tion in different parts of the vocal tract [1]. Knowing the position in-
formation of articulators along with the speech acoustics has shown
to improve the performance in various applications like speech
recognition [2, 3], speech synthesis [4], accent conversion [5] etc.
Electromagnetic articulograph (EMA) is one of the promising de-
vices to capture acoustic-articulatory data comprising synchronous
recordings of articulatory movements and speech but the technol-
ogy is still limited to lab setup. Also, it is challenging to collect
acoustic-articulatory data for a long time with sensors attached to
the articulators. So, there are limitations with this direct articulatory
movement recording particularly in terms of the amount of acoustic-
articulatory data from a subject. Therefore, a mapping function is
typically learnt to estimate the articulatory movements from speech
acoustic features with the available acoustic-articulatory data. This
is known as acoustic-to-articulatory inversion (AAI). Various meth-
ods have been proposed in the literature for AAI, namely codebook
based [6], Gaussian Mixture Model [7], Hidden Markov Model
(HMM) [8], Deep Neural Networks [9, 10]. Bidirectional Long
Short Term Memory (BLSTM) network architecture among recur-

rent neural networks (RNN) has been shown to give state-of-the-art
performance for AAI [11, 12], which also preserves the smoothly
varying nature of articulatory trajectories [13].

The choice of acoustic features is crucial for AAI, and it is typi-
cally chosen in such a way that it preserves the maximal information
between acoustic and articulatory features. Using maximal mutual
information criterion Ghosh et al. [13], have shown that mel fre-
quency cepstral coefficients (MFCCs) are better than the linear pre-
diction coefficients (LPCs), cepstral representation of LPC (LPCC),
and variants of LPC (line spectral frequency (LSF), reflection co-
efficient (RC), log area ratio (LAR)). On the other hand, recently
CNNs have been shown to be successful in learning acoustic fea-
tures from the raw signal, which have been used to achieve state-of-
the-art performances in automatic speech recognition (ASR) [14, 15]
and speaker verification tasks [16, 17]. Inspired by these advance-
ments, we, in this work, explore learning feature representations us-
ing CNN for AAI and compare their performance with that of tradi-
tional knowledge driven features.

In this work we propose an end-to-end network for AAI, where
we incorporate a CNN in the first layer to learn the features from the
raw waveform followed by a BLSTM network which learns map-
ping function to estimate the articulatory trajectories from features
learnt by CNN. End-to-end networks often require large amount of
data. However, the amount of training data available for AAI is typ-
ically much less compared to those for ASR and speaker verification
tasks. Hence, it is challenging to train an end-to-end network for
AAI. For this purpose, we deploy different training schemes to over-
come the availability of the limited acoustic-articulatory data from
a subject. Experimental results show that the features learnt from
CNN show competitive performance with the knowledge driven fea-
tures (MFCC). The rest of the paper is organized as follows, we be-
gin with the explanation of the data collection process followed by
the proposed approach for AAI. Section 4 presents the experimental
setup followed by the results and discussion.

2. DATA COLLECTION

In this work, 460 MOCHA TIMIT sentences were chosen as
speech stimuli to collect acoustic-articulatory data. EMA AG501
[18] was used to record speech and articulatory movements syn-
chronously. AG501 has a capacity of 24 channels, which can capture
3-dimensional position information of 24 sensors. To capture artic-
ulatory movements, six sensors were attached to speech articulators
namely, upper lip (UL), lower lip (LL), jaw (Jaw), tongue tip (TT),
tongue body (TB) and tongue dorsum (TD) following the guidelines
provided in [19]. For head movement correction two sensors were
placed behind the ears. We considered the articulatory movements
in the midsagittal plane as shown in Fig. 1, where X and Y denote
horizontal and vertical directional movements of articulators, re-
spectively. This results in 12 articulatory features denoted by, ULx,
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ULy , LLx, LLy , Jawx, Jawy , TTx, TTy , TBx, TBy , TDx,
TDy .

Upper Lip: UL
Lower Lip: LL
Jaw: Jaw
Tongue TIP:TT
Tongue Body: TB
Tongue Dorsum: TDJaw

LL

UL
TBTD

TT

Y
X

Fig. 1. Schematic diagram indicating the placement of EMA sensors
[12].

Total eight subjects participated in this study, out of which 4
were male (M1, M2, M3, M4) and 4 were female (F1, F2, F3, F4).
All the subjects were from an age group of 21-28 years and fluent
speakers of English with no record of speech disorders in the past.
For each subject, recording of all 460 sentences was done in a single
session. Before starting the recordings, enough time was provided
to the subject to get used to the sensors attached to the articulators.
During the recording, each sentence was displayed on a computer
monitor screen and a wireless slide navigator was provided to the
subject to navigate through the sentences. Speech was recorded
at 48kHz synchronously with articulatory movements (250Hz) us-
ing t.bone EM9600 shotgun, unidirectional electret condenser mi-
crophone [20]. We performed manual annotations for the recorded
acoustic-articulatory data to remove start and end silence segments
in each sentence. This results in parallel acoustic-articulatory data
with a total duration of 3.19 hours and an average duration of 23.97
(± 2.43) minutes per subject.

3. PROPOSED APPROACH

In this section, we present a brief overview of AAI followed by the
proposed approach.

AAI is the task of mapping the acoustic features to the articu-
latory movements. This inverse mapping is known to be non-linear
and non-unique in nature [3]. Also, the current articulatory position
is determined not only by the corresponding phone but also by the
preceding and succeeding phones. To incorporate this dependency,
a context in time is provided to the acoustic features by concatenat-
ing the neighbour frames [10]. DNNs are often deployed to learn
complex non-linear mapping, but the predicted articulatory move-
ments by DNNs turn out to be jagged in nature; this, in turn, re-
quires smoothing as a post-processing step. Recently, BLSTM net-
works have shown to provide a state-of-the-art performance for AAI
[11, 12]. BLSTM networks also implicitly take care of providing
context information to acoustic features and preserving smoothly
varying nature of the predicted articulatory trajectories. Typically
the acoustic features for AAI are chosen to be MFCC and shown to
be the best in terms of the mutual information between acoustic and
articulatory features [13]. On the other hand, CNNs are known to
learn the local representations well. In this work, rather than using
the knowledge driven features like MFCC, we propose a neural net-
work architecture which extracts features directly from raw speech
signal. This is done by incorporating a CNN layer as the first layer
followed by the conventional BLSTM network for AAI [11, 12].

In the proposed approach, a speech signal is converted into short
speech segments (also called speech frames) with a window length
Wl and a window shift Ws. Ws is chosen to match the sampling
rate of articulatory data, such that there is a one-to-one correspon-
dence between the acoustic and articulatory features. To extract the

features from the speech frames, we consider a single CNN layer as
first layer. Let Ncf be the number of CNN filters with i-th filter Fi

having lengthNl denoted by F={Fi}
Ncf

i=1 , where Fi ∈ R1×Nl with a
bias vector b∈ RNcf . At a frame index n, let xn be the speech frame.
We compute Yn ∈ R(Wl−Nl+1)×Ncf , the output of the convolution
filter by

Yn = σ(log(|F ∗ xn + b|)) (1)

where, ∗ denotes the convolution operation and σ is a non-linear
activation function. Before applying non-linear activation we com-
pute the absolute value of CNN filter output followed by a loga-
rithm [14]. Next on the output Yn, we perform max-pooling of size
(Wl −Nl + 1) which results in an 1×Ncf dimensional output yn,
which could help in discarding short term phase information [15].

BLSTM
layers

Dense
layer

1D-CNN
layer Max pooling

Speech
frames

z1

z12

{xn}n=1
N

{Y n}n=1
N

{yn}n=1
N {zn}n=1

N

Representation Learning

Fig. 2. Illustration of end-to-end AAI setup based on the proposed
approach.

The proposed architecture is shown in Fig. 2. From all the
speech frames in a given utterance, we extract features {yn}

N
n=1

using a CNN layer and max-pooling operation, where N denotes
number of speech frames in an utterance. These features are fed to
BLSTM hidden layers which are followed by the time-distributed
linear regression (Dense) layer at the end to predict the articulatory
features {zn}Nn=1. The training is performed jointly on the CNN and
BLSTM networks.

4. EXPERIMENTAL SETUP

Initially, we pre-process the recorded acoustic-articulatory data. To
remove high frequency noise from the recorded articulatory data
which occur during acquisition, low-pass filtering is done with a cut-
off frequency of 25Hz [13]. Then articulatory data is down-sampled
to 100Hz. Since the average position of EMA sensors could change
from utterance to utterance, we remove mean from each dimension
of articulatory feature vector at an utterance level. We down-sample
the raw speech waveform to 8kHz, and perform pre-emphasis with
α = 0.97 (importance of pre-emphasis is explained in detail in Sec-
tion 5.1) identical to the pre-emphasis used for MFCC computation
[21]. Then using a Hamming window of length Wl = 200 (25msec)
and with window shift Ws = 80 (10msec), the raw waveform is
windowed to convert a given utterance into multiple speech frames.

For learning features from CNN, we use Nl = 160 (20msec).
We have experimented with different values of Ncf = 40, 100, and
256. For the BLSTM, we choose 3 hidden layers with 150 units in
each. We also performed experiments with the end-to-end architec-
tures proposed in [14, 15] but there is no significant improvement
in performance of AAI. The recorded 460 utterances of acoustic-
articulatory data are divided into three sets for: train 80% (364), val-
idation 10% (46) and test 10% (46) for each subject. An utterance by
utterance training is performed by grouping all speech frames of an
utterance to predict the complete articulatory trajectories for the ut-
terance. To accelerate the speed of training we perform zero padding
at the end of utterances of the acoustic-articulatory data in train and
validation sets, to get a fixed length sequence of 4sec. This enables
us to use a fixed batch size while training. A batch size of 5 is finally
chosen, as it turns out to be the best among the choices considered
namely, 5, 10, 25. We use mean squared error as an objective func-

5932



tion to minimize and Adam as an optimizer [22]. All experiments
are performed using Keras [23] with Tesorflow backend [24].

We deploy different training approaches to overcome limitation
on the amount of available acoustic-articulatory data. The first ap-
proach is a standard way to train the AAI, where models are trained
separately for all subjects in a subject specific manner. In the second
approach, we first train a single AAI model by pooling data from all
the subjects. From the single trained model, we fine-tune the weights
further with the data from each subject separately. Early-stopping is
imposed based on the validation data loss to avoid over-fitting.

To asses the performance of AAI models, we choose two error
metrics for each articulator separately, namely root mean squared
error (RMSE) and correlation coefficient (CC) [13, 12]. For ith ar-
ticulatory trajectory RMSEi and CCi are given by

RMSEi =

√√√√ 1

N

N∑
n=1

(din − zin)2, (2)

CCi =

∑N
n=1(din − d̄i)(zin − z̄i)√∑N

n=1(din − d̄i)2
∑N

n=1(zin − z̄i)2
. (3)

where, din and zin are the original and predicted ith articulatory
data for n-th frame index, d̄i and z̄i are the corresponding mean of{
din
}N
n=1

and
{
zin
}N
n=1

across N number of frames. Note that, to
indicate average CC among the articulators and/or subjects, we use
the following notations: CCAavg is average CC across all the artic-
ulatory dimensions for a subject, CCSavg is average CC of ith ar-
ticulatory dimension across all subjects andCCavg is average across
all articulatory dimensions and subjects. Similar notation is followed
for RMSE as well.

5. RESULTS AND DISCUSSION

In this section, we present the results of the experiments which show
the importance of pre-emphasis filter, followed by the performance
evaluation of AAI in different training approaches. Finally we com-
pare the proposed method with the baseline MFCC based AAI.

5.1. Analysis on Pre-emphasis

Here we perform experiments to train AAI models independently for
all the subjects in subject specific manner, separately with and with-
out pre-emphasis operation on the raw waveform. Table 1 reports
the performance of AAI models with and without pre-emphasis op-
eration for different choices of Ncf . We observe that, pre-emphasis
of α = 0.97 yields an improvement in RMSEavg of 0.13, 0.16,
0.20mm and in CCavg of 0.03, 0.03, 0.04 over no pre-emphasis for
Ncf = 40, 100, 256 respectively.

Table 1. Performance of AAI with and without pre-emphasis.
Ncf RMSEavg CCavg

Without Pre-emphasis
40 1.81 0.78

100 1.82 0.78
256 1.86 0.77

Pre-emphasis = 0.97
40 1.68 0.81

100 1.66 0.81
256 1.66 0.81

To observe the difference in frequency characteristics of the
learned filters with and without considering pre-emphasis, we plot
the center frequencies of filters learned by the CNN for Ncf =256

as shown in Fig. 3. In Fig. 3, x-axis represents frequency and y-axis
indicates the filter index sorted in increasing order of center frequen-
cies. When no pre-emphasis is performed, we observe that more
number of filters are centered in the frequency range 0-1000Hz. To
quantify it, we calculate the number of filters with center frequencies
below 1000Hz on average across all the subjects. It turns out that,
without using pre-emphasis for Ncf = 40, 100, 256 the number of
filters below 1000Hz are 24, 63.3, 171.6 as opposed to 16.6, 46.2,
129.2 respectively with using pre-emphasis. Thus we observe that
pre-emphasis helps to boost the high frequency components, thereby
higher formant regions and plays an important role in improving the
performance of AAI. Therefore, all further experiments are carried
out using pre-emphasis with α =0.97.
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Fig. 3. Illustration of center frequencies learned using CNN with
( ) and without ( ) pre-emphasis operation for each subject.

5.2. Joint training and adaptation

Table 2. Performance of AAI in terms of RMSEavg (mm) with
different training approaches.

Training Ncf =40 Ncf =100 Ncf =256
Independent 1.68 1.66 1.66

Joint 1.56 1.63 1.60
Adaptation 1.47 1.50 1.49

At first, we perform training AAI models for each subject sep-
arately with ∼24 minutes of acoustic-articulatory data. The AAI
performance using RMSEavg using such a setup is shown in the
first row of Table 2. The acoustic-articulatory data from individual
subject could be less to train a network from raw waveform. So,
we pool acoustic-articulatory data from all subjects which results
in ∼3.19 hours of data for jointly training an AAI model with all
subjects. Second row in Table 2, summarizes the RMSEavg ob-
tained by such joint training. We observe that with joint training
an improvement in RMSEavg of 0.12, 0.03, 0.06mm is achieved
for Ncf = 40, 100, 256 respectively. The frequency response of
the filters learnt after joint training is shown in Fig. 4, where x-axis
represents frequency, y-axis represents sorted filter index and color
intensity variations indicate the magnitude response. Interestingly,
the frequency response is band-pass in nature and center frequencies
are found to be similar to those of mel-scale which is linear in lower
frequency region (approximately < 1000Hz) and is non-linear from
1000Hz to 4000Hz frequency region. This could be due to the fact
that the speech gestural information is maximally preserved when
speech signal is processed by auditory filters such as mel-scale or
bark-scale [25]. The frequency response learned for AAI is noted
to be similar to the frequency response of filters learned from raw
waveform in ASR literature [14, 15].
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Table 3. Individual articulatory wise comparison of MFCC vs CNN features in terms of CCSavg

Features ULx ULy LLx LLy Jawx Jawy TTx TTy TBx TBy TDx TDy Average

MFCC 0.723
(0.15)

0.727
(0.16)

0.805
(0.12)

0.873
(0.08)

0.854
(0.08)

0.836
(0.12)

0.906
(0.06)

0.925
(0.04)

0.915
(0.05)

0.913
(0.04)

0.912
(0.05)

0.909
(0.05)

0.858
(0.12)

CNN 0.716
(0.15)

0.730
(0.16)

0.796
(0.12)

0.871
(0.07)

0.850
(0.09)

0.841
(0.11)

0.880
(0.09)

0.915
(0.05)

0.894
(0.07)

0.901
(0.05)

0.893
(0.07)

0.897
(0.05)

0.849
(0.12)

It is known that articulation style is subject specific in nature,
which varies the timing and range of movements of articulators
across different subjects thereby corresponding acoustic character-
istics [26, 27]. Hence the AAI model learned by joint training could
be a mapping function which is averaged across all the subjects. So,
we further perform adaption on weights learnt during joint training
by fine-tuning them to each subject’s acoustic-articulatory data in-
dividually. In Table 2, last row represents the performance of AAI
using adaptation. It is observed that, using joint training followed by
adaptation, we achieve an improvement inRMSEavg of 0.21, 0.16,
0.17mm compared to the independent training for Ncf = 40, 100,
256 respectively. This could be due to the fact that the rich acoustic-
articulatory mapping learnt from multiple subjects obtained by joint
training would benefit in terms of better initialization of weights
while adaptation [12]. We also note that an increase in Ncf from 40
to 256 does not seem to increase the benefit in the performance of
AAI.
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5.3. Comparison with MFCC

As a baseline scheme for comparison, we compute MFCC from the
acoustics. We feed MFCC features directly to BLSTM without hav-
ing CNN layer and max pooling. To have a fair comparison we
perform joint training and adaption for MFCC similar to the raw
waveform approach with CNN. Fig. 5 shows the individual subject
wise comparison of performance with knowledge based MFCC fea-
tures and learnt features using CNN (Ncf = 40). The bar height
for each subject in Fig. 5 indicates the mean CCAavg (top row) and
RMSEAavg (bottom row) across all the test utterances and the er-
ror bars indicate the corresponding standard deviation (SD). Also,
we observe that the RMSEavg is found to be 1.47mm for CNN
features which is on par with that using MFCC (1.42mm).

We also report the individual articulatory performance in terms
of CCSavg (SD), in Table. 3. We observe that for two of the ar-
ticulators ULy and Jawy , CNN performs slightly better (0.01) than
MFCC. For the rest of the articulators, MFCC performs, on aver-
age, slightly better (0.01) than CNN. We perform ‘ttest’ on CCi (for
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Fig. 5. Subject wise comparison of MFCC vs CNN features in terms
of CCAavg (top) and RMSEAavg (bottom in mm).

each subject separately), in order to verify whether the performance
of AAI with CNN features and MFCC is significantly different. We
observe that there is no significant (p < 0.01) difference in AAI
performance using CNN and MFCC features, except for the articu-
lators TTx, TBx and TDx corresponding to subjects F1, F3 and F4.
Fig. 6 illustrates a plot of tongue tip articulatory trajectory predicted
using MFCC and CNN features with reference to original test utter-
ance trajectory of subject F3. We observe that the trend in predicted
trajectories is similar between CNN features and MFCC.
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Fig. 6. Illustration of TT trajectories with MFCC and CNN features
predicted using AAI with respect to the original trajectory.

6. CONCLUSION

We proposed an end-to-end network for AAI by cascading a CNN
layer to the state-of-the-art BLSTM network. Experiments per-
formed with 8 subjects revealed that the proposed CNN based
approach (using a simple single 1D-CNN layer with 40 filters) per-
forms on par with MFCC. Joint training and adaption of AAI model,
which was deployed to overcome the limitation of available amount
of acoustic-articulatory data, was shown to improve the performance
of AAI. We showed an analysis on the benefit of pre-emphasis using
a fixed coefficient α = 0.97 for end-to-end network. In future, we
will learn α by integrating it to the end-to-end AAI network. Also,
it is interesting to perform an end-to-end AAI for each articulator
separately to observe the learned frequency representations in an
articulatory specific manner. These are the parts of our future work.
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