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ABSTRACT

Neural waveform models such as the WaveNet are used in many
recent text-to-speech systems, but the original WaveNet is quite
slow in waveform generation because of its autoregressive (AR)
structure. Although faster non-AR models were recently reported,
they may be prohibitively complicated due to the use of a distilling
training method and the blend of other disparate training criteria.
This study proposes a non-AR neural source-filter waveform model
that can be directly trained using spectrum-based training criteria
and the stochastic gradient descent method. Given the input acoustic
features, the proposed model first uses a source module to generate
a sine-based excitation signal and then uses a filter module to
transform the excitation signal into the output speech waveform.
Our experiments demonstrated that the proposed model generated
waveforms at least 100 times faster than the AR WaveNet and the
quality of its synthetic speech is close to that of speech generated by
the AR WaveNet. Ablation test results showed that both the sine-
wave excitation signal and the spectrum-based training criteria were
essential to the performance of the proposed model.

Index Terms— speech synthesis, neural network, waveform
modeling

1. INTRODUCTION

Text-to-speech (TTS) synthesis, a technology that converts texts
into speech waveforms, has been advanced by using end-to-end
architectures [1] and neural-network-based waveform models [2, 3,
4]. Among those waveform models, the WaveNet [2] directly models
the distributions of waveform sampling points and has demonstrated
outstanding performance. The vocoder version of WaveNet [5],
which converts the acoustic features into the waveform, also
outperformed other vocoders for the pipeline TTS systems [6].

As an autoregressive (AR) model, the WaveNet is quite slow
in waveform generation because it has to generate the waveform
sampling points one by one. To improve the generation speed,
the Parallel WaveNet [3] and the ClariNet [4] introduce a distilling
method to transfer ‘knowledge’ from a teacher AR WaveNet to
a student non-AR model that simultaneously generates all the
waveform sampling points. However, the concatenation of two large
models and the mix of distilling and other training criteria reduce the
model interpretability and raise the implementation cost.

In this paper, we propose a neural source-filter waveform model
that converts acoustic features into speech waveforms. Inspired
by classical speech modeling methods [7, 8], we used a source

∗This work was partially supported by JST CREST Grant Number
JPMJCR18A6, Japan and by MEXT KAKENHI Grant Numbers (16H06302,
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module to generate a sine-based excitation signal with a specified
fundamental frequency (F0). We then used a dilated-convolution-
based filter module to transform the sine-based excitation into the
speech waveform. The proposed model was trained by minimizing
spectral amplitude and phase distances, which can be efficiently
implemented using discrete Fourier transforms (DFTs). Because the
proposed model is a non-AR model, it generates waveforms much
faster than the AR WaveNet. A large-scale listening test showed
that the proposed model was close to the AR WaveNet in terms of
the Mean opinion score (MOS) on the quality of synthetic speech.
An ablation test showed that both the sine-wave excitation and the
spectral amplitude distance were crucial to the proposed model.

The model structure and training criteria are explained in
Section 2, after which the experiments are described in Section 3.
Finally, this paper is summarized and concluded in Section 4.

2. PROPOSED MODEL AND TRAINING CRITERIA

2.1. Model structure

The proposed model (shown in Figure 1) converts an input acoustic
feature sequence c1:B of length B into a speech waveform ô1:T of
length T . It includes a source module that generates an excitation
signal e1:T , a filter module that transforms e1:T into the speech
waveform, and a condition module that processes the acoustic
features for the source and filter modules. None of the modules
takes the previously generated waveform sample as the input. The
waveform is assumed to be real-valued, i.e., ôt ∈ R, 0 < t ≤ T .

2.1.1. Condition module

The condition module takes as input the acoustic feature sequence
c1:B = {c1, · · · , cB}, where each cb = [fb, s

>
b ]
> contains

the F0 fb and the spectral features sb of the b-th speech frame.
The condition module upsamples the F0 by duplicating fb to
every time step within the b-th frame and feeds the upsampled F0
sequence f1:T to the source module. Meanwhile, it processes c1:B
using a bi-directional recurrent layer with long-short-term memory
(LSTM) units [9] and a convolutional (CONV) layer, after which
the processed features are upsampled and sent to the filter module.
The LSTM and CONV were used so that the condition module was
similar to that of the WaveNet-vocoder [10] in the experiment. They
can be replaced with a feedforward layer in practice.

2.1.2. Source module

Given the input F0 sequence f1:T , the source module generates a
sine-based excitation signal e1:T = {e1, · · · , eT }, where et ∈
R, ∀t ∈ {1, · · · , T}. Suppose the F0 value of the t-th time step
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Fig. 1. Structure of proposed model. B and T denote lengths of input feature sequence and output waveform, respectively. FF, CONV, and
Bi-LSTM denote feedforward, convolutional, and bi-directional recurrent layers, respectively. DFT denotes discrete Fourier transform.

is ft ∈ R≥0, and ft = 0 denotes being unvoiced. By treating ft as
the instantaneous frequency [11], a signal e<0>

1:T can be generated as

e<0>
t =


α sin(

t∑
k=1

2π
fk
Ns

+ φ) + nt, if ft > 0

1

3σ
nt, if ft = 0

, (1)

where nt ∼ N (0, σ2) is a Gaussian noise, φ ∈ [−π, π] is a random
initial phase, and Ns is equal to the waveform sampling rate.

Although we can directly set e1:T = e<0>
1:T , we tried two

additional tricks. First, a ‘best’ phase φ∗ for e<0>
1:T can be

determined in the training stage by maximizing the correlation
between e<0>

1:T and the natural waveform o1:T . During generation, φ
is randomly generated. The second method is to generate harmonics
by increasing fk in Equation (1) and use a feedforward (FF) layer
to merge the harmonics and e<0>

1:T into e1:T . In this paper we use 7
harmonics and set σ = 0.003 and α = 0.1.

2.1.3. Neural filter module

Given the excitation signal e1:T from the source module and the
processed acoustic features from the condition module, the filter
module modulates e1:T using multiple stages of dilated convolution
and affine transformations similar to those in ClariNet [4]. For
example, the first stage takes e1:T and the processed acoustic
features as input and produces two signals a1:T and b1:T using
dilated convolution. The e1:T is then transformed using e1:T �
b1:T + a1:T , where � denotes element-wise multiplication. The
transformed signal is further processed in the following stages, and
the output of the final stage is used as generated waveform ô1:T .

The dilated convolution blocks are similar to those in Parallel
WaveNet [3]. Specifically, each block contains multiple dilated
convolution layers with a filter size of 3. The outputs of the
convolution layers are merged with the features from the condition
module through gated activation functions [3]. After that, the
merged features are transformed into a1:T and b̃1:T . To make sure
that b1:T is positive, b1:T is parameterized as b1:T = exp(b̃1:T ).

Unlike ClariNet or Parallel WaveNet, the proposed model does
not use the distilling method. It is unnecessary to compute the
mean and standard deviation of the transformed signal. Neither is
it necessary to form the convolution and transformation blocks as an
inverse autoregressive flow [12].

2.2. Training criteria in frequency domain

Because speech perception heavily relies on acoustic cues in the
frequency domain, we define training criteria that minimize the
spectral amplitude and phase distances, which can be implemented
using DFTs. Given these criteria, the proposed model is trained
using the stochastic gradient descent (SGD) method.

2.2.1. Spectral amplitude distance

Following the convention of short-time Fourier analysis, we conduct
waveform framing and windowing before producing the spectrum
of each frame. For the generated waveform ô1:T , we use x̂(n) =

[x̂
(n)
1 , · · · , x̂(n)

M ]> ∈ RM to denote the n-th waveform frame of
length M . We then use ŷ(n) = [ŷ

(n)
1 , · · · , ŷ(n)

K ]> ∈ CK to denote
the spectrum of x̂(n) calculated using K-point DFT. We similarly
define x(n) and y(n) for the natural waveform o1:T .

Suppose the waveform is sliced into N frames. Then the log
spectral amplitude distance is defined as follows:

Ls =
1

2

N∑
n=1

K∑
k=1

[
log

Re(y(n)
k )2 + Im(y(n)

k )2

Re(ŷ(n)
k )2 + Im(ŷ(n)

k )2

]2
, (2)

where Re(·) and Im(·) denote the real and imaginary parts of a
complex number, respectively.

Although Ls is defined on complex-valued spectra, the gradient
∂Ls

∂ô1:T
∈ RT for SGD training can be efficiently calculated. Let

us consider the n-th frame and compose a complex-valued vector
g(n) = ∂Ls

∂Re(ŷ(n))
+ j ∂Ls

∂Im(ŷ(n))
∈ CK , where the k-th element is

g
(n)
k = ∂Ls

∂Re(ŷ
(n)
k

)
+ j ∂Ls

∂Im(ŷ
(n)
k

)
∈ C. It can be shown that, as long

as g(n) is Hermitian symmetric, the inverse DFT of g(n) is equal
to ∂Ls

∂x̂(n) = [ ∂Ls

∂x̂
(n)
1

, · · · , ∂Ls

∂x̂
(n)
m

, ∂Ls

∂x̂
(n)
M

] ∈ RM 1. Using the same

method, ∂Ls

∂x̂(n) for n ∈ {1, · · · , N} can be computed in parallel.
Given { ∂Ls

∂x̂(1) , · · · , ∂Ls

∂x̂(N) }, the value of each ∂Ls
∂ôt

in ∂Ls
∂ô1:T

can be

easily accumulated since the relationship between ôt and each x̂(n)
m

has been determined by the framing and windowing operations.

1In the implementation using fast Fourier transform, x̂(n) of length M
is zero-padded to length K before DFT. Accordingly, the inverse DFT of
g(n) also gives the gradients w.r.t. the zero-padded part, which should be
discarded (see https://arxiv.org/abs/1810.11946).
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Table 1. Three framing and DFT configurations for Ls and Lp

Ls1&Lp1 Ls2&Lp2 Ls3&Lp3

DFT bins K 512 128 2048
Frame length M 320 (20 ms) 80 (5 ms) 1920 (120 ms)

Frame shift 80 (5 ms) 40 (2.5 ms) 640 (40 ms)
Note: all configurations use Hann window.

In fact, ∂Ls
∂ô1:T

∈ RT can be calculated in the same manner
no matter how we set the framing and DFT configuration, i.e., the
values of N , M , and K. Furthermore, multiple Lss with different
configurations can be computed, and the gradients ∂Ls

∂ô1:T
can be

simply summed up. For example, using the three Lss in Table 1
was found to be essential to the proposed model (see Section 3.3).

The Hermitian symmetry of g(n) is satisfied if Ls is carefully
defined. For example,Ls can be the square error or Kullback-Leibler
divergence (KLD) of the spectral amplitudes [13, 14]. The phase
distance defined below also satisfies the requirement.

2.2.2. Phase distance

Given the spectra, a phase distance [15] is computed as

Lp =
1

2

N∑
n=1

K∑
k=1

∣∣∣1− exp(j(θ̂
(n)
k − θ(n)

k ))
∣∣∣2

=

N∑
n=1

K∑
k=1

[
1− Re(ŷ(n)

k )Re(y(n)
k ) + Im(ŷ(n)

k )Im(y(n)
k )

|ŷ(n)
k ||y

(n)
k |

], (3)

where θ̂(n)
k and θ(n)

k are the phases of ŷ(n)
k and y(n)

k , respectively.
The gradient ∂Lp

∂ô1:T
can be computed by the same procedure as

∂Ls
∂ô1:T

. Multiple Lps and Lss with different framing and DFT
configurations can be added up as the ultimate training criterion
L. For different L∗s, additional DFT/iDFT and framing/windowing
blocks should be added to the model in Figure 1.

3. EXPERIMENTS

3.1. Corpus and features

This study used the same Japanese speech corpus and data division
recipe as our previous study [16]. This corpus [17] contains neutral
reading speech uttered by a female speaker. Both validation and
test sets contain 480 randomly selected utterances. Among the 48-
hour training data, 9,000 randomly selected utterances (15 hours)
were used as the training set in this study. For the ablation test in
Section 3.3, the training set was further reduced to 3,000 utterances
(5 hours). Acoustic features, including 60 dimensions of Mel-
generalized cepstral coefficients (MGCs) [18] and 1 dimension of
F0, were extracted from the 48 kHz waveforms at a frame shift
of 5 ms using WORLD [19]. The natural waveforms were then
downsampled to 16 kHz for model training and the listening test.

3.2. Comparison of proposed model, WaveNet, and WORLD

The first experiment compared the four models listed in Table 22.
The WAD model, which was trained in our previous study [6],

2The models were implemented using a modified CURRENNT toolkit
[20] on a single P100 Nvidia GPU card. Codes, recipes, and generated speech
can be found on https://nii-yamagishilab.github.io.

Table 2. Models for comparison test in Section 3.2
WOR WORLD vocoder
WAD WaveNet-vocoder for 10-bit discrete µ-law waveform
WAC WaveNet-vocoder using Gaussian dist. for raw waveform
NSF Proposed model for raw waveform

Natural WOR WAD WAC NSF
1

2
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O

S
)

Fig. 2. MOS scores of natural speech, synthetic speech given natural
acoustic features (blue), and synthetic speech given acoustic features
generated from acoustic models (red). White dots are mean values.

Table 3. Average number of waveform points generated in 1 s
WAD NSF (memory-save mode) NSF (normal mode)
0.19k 20k 227k

contained a condition module, a post-processing module, and 40
dilated CONV blocks, where the k-th CONV block had a dilation
size of 2modulo(k,10). WAC was similar to WAD but used a Gaussian
distribution to model the raw waveform at the output layer [4].

The proposed NSF contained 5 stages of dilated CONV and
transformation, each stage including 10 convolutional layers with
a dilation size of 2modulo(k,10) and a filter size of 3. Its condition
module was the same as that of WAD and WAC. NSF was trained
using L = Ls1 + Ls2 + Ls3, and the configuration of each Ls∗ is
listed in Table 1. The phase distance Lp∗ was not used in this test.

Each model generated waveforms using natural and generated
acoustic features, where the generated acoustic features were
produced by the acoustic models in our previous study [6]. The
generated and natural waveforms were then evaluated by paid native
Japanese speakers. In each evaluation round the evaluator listened
to one speech waveform in each screen and rated the speech quality
on a 1-to-5 MOS scale. The evaluator can take at most 10 evaluation
rounds and can replay the sample during evaluation. The waveforms
in an evaluation round were for the same text and were played in
a random order. Note that the waveforms generated from NSF and
WAC were converted to 16-bit PCM format before evaluation.

A total of 245 evaluators conducted 1444 valid evaluation
rounds in all, and the results are plotted in Figure 2. Two-sided
Mann-Whitney tests showed that the difference between any pair
of models is statistically significant (p < 0.01) except NSF and
WAC when the two models used generated acoustic features. In
general, NSF outperformed WOR and WAC but performed slightly
worse than WAD. The gap of the mean MOS scores between NSF
and WAD was about 0.12, given either natural or generated acoustic
features. A possible reason for this result may be the difference
between the non-AR and AR model structures, which is similar
to the difference between the finite and infinite impulse response
filters. WAC performed worse than WAD because some syllables were
perceived to be trembling in pitch, which may be caused by the
random sampling generation method. WAD alleviated this artifact
by using a one-best generation method in voiced regions [6].

After the MOS test, we compared the waveform generation
speed of NSF and WAD. The implementation of NSF has a normal
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natural acoustic features in test set (utterance AOZORAR 03372 T01). Figures are plotted using 5 ms frame length and 2.5 ms frame shift.

Table 4. Models for ablation test (Section 3.3)
NSFs NSF trained on 5-hour data
L1 NSFs without using Ls3ssssssssss (i.e., L = Ls1 + Ls2)
L2 NSFs without using Ls2ssssssssss (i.e., L = Ls1 + Ls3)
L3 NSFs without using Ls2 nor Ls3sssssssss (i.e., L = Ls1)
L4 NSFs using L = Ls1 + Ls2 + Ls3 + Lp1 + Lp2 + Lp3

L5 NSFs using KLD of spectral amplitudes
S1 NSFs without harmonics
S2 NSFs without harmonics or ‘best’ phase φ∗

S3 NSFs only using noise as excitation
N1 NSFs with b1:T = 1 in filter’s transformation layers
N2 NSFs with b1:T = 0 in filter’s transformation layers

generation mode and a memory-save one. The normal mode
allocates all the required GPU memory once but cannot generate
waveforms longer than 6 seconds because of the insufficient memory
space in a single GPU card. The memory-save mode can generate
long waveforms because it releases and allocates the memory layer
by layer, but the repeated memory operations are time consuming.

We evaluated NSF using both modes on a smaller test set, in
which each of the 80 generated test utterances was around 5 seconds
long. As the results in Table 3 show, NSF is much faster than WAD.
Note that WAD allocates and re-uses a small size of GPU memory,
which needs no repeated memory operation. WAD is slow mainly
because of the AR generation process. Of course, both WAD and NSF
can be improved if our toolkit is further optimized. Particularly, if
the memory operation can be sped up, the memory-save mode of
NSF will be much faster.

3.3. Ablation test on proposed model

This experiment was an ablation test on NSF. Specifically, the 11
variants of NSF listed in Table 4 were trained using the 5-hour
training set. For a fair comparison, NSF was re-trained using the
5-hour data, and this variant is referred to as NSFs. The speech
waveforms were generated given the natural acoustic features and
rated in 1444 evaluation rounds by the same group of evaluators in
Section 3.2. This test excluded natural waveform for evaluation.

The results are plotted in Figure 4. The difference between
NSTs and any other model except S2 was statistically significant
(p < 0.01). Comparison among NSTs, L1, L2, and L3 shows that
using multiple Lss listed in Table 1 is beneficial. For L3 that used
only Ls1, the generated waveform points clustered around one peak
in each frame, and the waveform suffered from a pulse-train noise.
This can be observed from L3 of Figure 3, whose spectrogram in the

NSFs L1 L2 L3 L4 L5 S1 S2 S3 N1 N2

1
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Fig. 4. MOS scores of synthetic samples from NSFs and its variants
given natural acoustic features. White dots are mean MOS scores.

high frequency band shows more clearly vertical strips than other
models. Accordingly, this artifact can be alleviated by adding Ls2

with a frame length of 5 ms for model training, which explained
the improvement in L1. Using phase distance (L4) didn’t improve
the speech quality even though the value of the phase distance was
consistently decreased on both training and validation data.

The good result of S2 indicates that a single sine-wave
excitation with a random initial phase also works. Without the
sine-wave excitation, S3 generated waveforms that were intelligible
but lacked stable harmonic structure. N1 slightly outperformed
NSFs while N2 produced unstable harmonic structures. Because the
transformation in N1 is equivalent to skip-connection [21], the result
indicates that the skip-connection may help the model training.

4. CONCLUSION

In this paper, we proposed a neural waveform model with separated
source and filter modules. The source module produces a sine-
wave excitation signal with a specified F0, and the filter module uses
dilated convolution to transform the excitation into a waveform. Our
experiment demonstrated that the sine-wave excitation was essential
for generating waveforms with harmonic structures. We also found
that multiple spectral-based training criteria and the transformation
in the filter module contributed to the performance of the proposed
model. Compared with the AR WaveNet, the proposed model
generated speech with a similar quality at a much faster speed.

The proposed model can be improved in many aspects. For
example, it is possible to simplify the dilated convolution blocks. It
is also possible to try classical speech modeling methods, including
glottal waveform excitations [22, 23], two-bands or multi-bands
approaches [24, 25] on waveforms. When applying the model to
convert linguistic features into the waveform, we observed the over-
smoothing affect in the high-frequency band and will investigate the
issue in the future work.
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