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ABSTRACT
Recent character and phoneme-based parametric TTS sys-
tems using deep learning have shown strong performance
in natural speech generation. However, the choice between
character or phoneme input can create serious limitations for
practical deployment, as direct control of pronunciation is
crucial in certain cases. We demonstrate a simple method for
combining multiple types of linguistic information in a sin-
gle encoder, named representation mixing, enabling flexible
choice between character, phoneme, or mixed representations
during inference. Experiments and user studies on a public
audiobook corpus show the efficacy of our approach.

Index Terms— Text-to-speech, deep learning, recurrent
neural network, attention, sequence-to-sequence learning.

1. INTRODUCTION

TTS synthesis [1] focuses on building systems which can gen-
erate speech (often in the form of an audio feature sequence
a), given a set of linguistic sequences, l. These sequences,
l and a, are of different length and dimensionality thus it is
necessary to find the alignment between the linguistic infor-
mation and the desired audio. We approach the alignment
problem by jointly learning to align these two types of in-
formation [2], effectively translating the information in the
linguistic sequence(s) into audio through learned transforma-
tions for effective TTS synthesis [3, 4, 5, 6, 7].

1.1. Data Representation

We employ log mel spectrograms as the audio feature rep-
resentation, a well-studied time-frequency representation [8]
for audio sequence a. Various settings used for this transfor-
mation can be seen in Table 2.

Linguistic information, l, can be given at the abstract level
as graphemes (also known as characters when using English)
or at a more detailed level which may include pronunciation
information, such as phonemes. Practically, character-level
information is widely available in open data sets though this
representation allows ambiguity in pronunciation [9].
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1.2. Motivating Representation Mixing

In some cases, it may be impossible to fully realize the desired
audio without being given direct knowledge of pronunciation.
Take as a particular example the sentence ”All travelers were
exhausted by the wind down the river”. The word ”wind”
in this sentence can be either noun form such as ”The wind
blew swiftly on the plains”, or verb form for traveling such as
”... and as we wind on down the road”, both of which have
different pronunciation.

Without external knowledge (such as additional context,
or an accompanying video) of which pronunciation to use for
the word, a TTS system which operates on character input
will always have ambiguity in this situation. Alternate ap-
proaches such as grapheme to phoneme methods [10] will
also be unable to resolve this problem. Such cases are well-
known in both TTS and linguistics [11, 12], motivating our
desire to flexibly combine grapheme and phoneme inputs in
a single encoder. Our method allows per example control of
pronunciation during inference without requiring this infor-
mation for all desired inputs, and similar methods have also
been important for other systems [13].
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Fig. 1. Visualization of embedding computation

2. REPRESENTATION MIXING DESCRIPTION

The input to the system consists of one data sequence, lj , and
one mask sequence, m. The data sequence, lj , consists of
a mixture between a character sequence, lc, and a phonetic
sequence, lp. The mask sequence describes which respective
sequence the symbol came from with an integer (0 or 1). Each
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time a training sequence is encountered, it is randomly mixed
at the word level and we assign all spaces and punctuation as
characters.

For example, a pair ”the cat”, ”@d@ah @k@ah@t”
(where @ is not a used symbol and serves only as an identi-
fier to mark phoneme boundaries) can be resampled as ”the
@k@ah@t”, with a corresponding mask of [0, 0, 0, 0, 1, 1, 1].
On the next occurrence, it may be resampled as ”@d@ah
cat”, with mask [1, 1, 0, 0, 0, 0]. This resampling procedure
can be seen as data augmentation, as well as training the
model to smoothly process both character and phoneme in-
formation without over-reliance on either representation. We
demonstrate the importance of each aspect in Section 4.

2.1. Combining Embeddings

The full mixed sequence, lj , separately passes through two
embedding matrices, ec and ep, and is then combined using
the mask sequence to form a joint mixed embedding, ej . For
convenience, ec and ep, are set to a vocabulary size that is
the max of the character and phoneme vocabulary sizes. This
mixed embedding is further combined with an embedding of
the mask sequence itself, em, for a final combined embed-
ding, ef . This embedding, ef , is treated as the standard input
for the rest of the network. A diagram describing this process
is shown in Figure 1.

ej = (1−m) ∗ ec +m ∗ ep (1)
ef = em + ej (2)

2.2. Stacked Multi-scale Residual Convolution

In the next sections, we describe the network architecture for
transforming the mixed representation into a spectrogram and
then an audio waveform. A full system diagram of our neural
network architecture can be seen in Figure 2.
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Fig. 2. Encoding, attention, and one step of mel decoder

The final embedding, ef , from the previous section is used
as input to a stacked multi-scale residual convolutional sub-

network (SMRC). The SMRC consists of several layers of
multi-scale convolutions, where each multi-scale layer is in
turn a concatenation of 1×1, 3×3, and 5×5 layers concate-
nated across the channel dimension. The layers are connected
using residual bypass connections [14] and batch normaliza-
tion [15] is used throughout. After the convolutional stage,
the resulting activations are input to a bidirectional LSTM
layer [16, 17]. This ends the encoding part of the network.

2.3. The Importance of Noisy Teacher Forcing

All audio information in the network passes through a mul-
tilayer pre-net with dropout [18, 4, 5], in both training and
evaluation. We found that using pre-net corrupted audio in
every layer (including the attention layer) greatly improves
the robustness of the model at evaluation, while corruption
of linguistic information made the generated audio sound less
natural.

2.4. Attention-based RNN Decoder

The encoding activations are attended using a Gaussian mix-
ture (GM) attention [19] driven by an LSTM network (condi-
tioned on both the text and pre-net activations), with a softplus
activation for the step of the Gaussian mean as opposed to the
more typical exponential activation. We find that a softplus
step substantially reduces instability during training. This is
likely due to the relative length differences between linguistic
input sequences and audio output.

Subsequent LSTM decode layers are conditioned on pre-
net activations, attention activations, and the hidden state of
the layer before, forming a series of skip connections [19, 20].
LSTM decode layers utilize cell dropout regularization [21].
The final hidden state is projected to match the dimension-
ality of the audio frames and a mean squared error loss is
calculated between the predicted and true next frames.

2.5. Truncated Backpropagation Through Time (TBPTT)

The network uses truncated backpropagation through time
(TBPTT) [17] in the decoder, only processing a subsection
of the relevant audio sequence while reusing the linguistic
sequence until the end of the associated audio sequence.
TBPTT training allows for a particular iterator packing
scheme not available with full sequence training, which con-
tinuously packs subsequences resetting only the particular
elements of the sequence minibatches (and the associated
RNN state) when reaching the end of an audio sequence. A
simplified diagram of this approach can be seen in Figure 3.

2.6. Converting Features Into Waveforms

After predicting a log mel spectrogram sequence from lin-
guistic input, further transformation must be applied to get an
audible waveform. A variety of methods have been proposed
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Fig. 3. Comparison of standard minibatching versus truncation.

for this inversion such as the Griffin-Lim transform [22], and
modified variants [23]. Neural decoders such as the condi-
tional WaveNet decoder [24, 5] or conditional SampleRNN
[25] can also act effectively as an inversion procedure to trans-
form log mel spectrograms into audible waveforms.

Optimization methods also work for inversion and we uti-
lize an L-BFGS based routine. This process optimizes ran-
domly initialized parameters (representing the desired wave-
form) passed through a log mel spectrogram transform, to
make the transform of these parameters match a given log
mel spectrogram [26].

This results in a set of parameters (which we now treat as
a fixed waveform) with a lossy transform that closely matches
the given log mel spectrogram. The overall procedure closely
resembles effective techniques in other generative modeling
settings [27].

Inversion Method Seconds per Sample STRTF
100 L-BFGS 1.49E-4 3.285
1000 L-BFGS 1.32E-3 29.08
Modified Griffin-Lim 2.81E-4 6.206
100 L + GL 4.11E-4 9.063
1000 L + GL 1.6E-3 35.28
WaveNet 7.9E-3 174.7
100 L + GL + WN 8.3E-3 183.7
1000 L + GL + WN 9.5E-3 210.0

Table 1. Comparison of various log mel spectrogram to waveform
conversion techniques. STRTF stands for ”slower than real time fac-
tor” (calculated assuming output sample rate of 22.05 kHz), where
1.0 would be real-time generation for a single example.

2.7. Inversion Pipeline

This work uses a combined pipeline of L-BFGS based inver-
sion, followed by modified Griffin-Lim for waveform estima-
tion [23]. The resulting waveform is of moderate quality, and
usable for certain applications including speech recognition.
Using either L-BFGS or Griffin-Lim in isolation did not yield
usable audio in our experiments. We also found that this or-
dering (L-BFGS then Griffin-Lim) in our two-stage pipeline
works much better than the reverse setting.

To achieve the highest quality output, we then use the
moderate quality waveform output from the two stage pipeline,
converted back to log mel spectrograms, for conditional
WaveNet synthesis. Though other work [5] clearly shows
that log mel spectrogram conditioned WaveNet can be used
directly, we find the two stage pipeline allows for quicker
quality checking during development, as well as slightly
higher quality in the resulting audio after WaveNet sampling.
We suspect this is because the pre-trained WaveNet [28] that
we use is trained on ground-truth log mel spectrograms rather
than predicted outputs. The synthesis speed of each setting is
shown in Table 1.

3. RELATED WORK

Representation mixing is closely related to the ”mixed-
character-and-phoneme” setting described in Deep Voice
3 [13], with the primary difference being our addition of the
mask embedding em. We found utilizing a mask embedding
alongside the character and phoneme embeddings further im-
proved quality, and was an important piece in the text portion
of the network. The focused user study in this paper also
highlights the advantages of this kind of mixing independent
of high-level architecture choices, since our larger system is
markedly different from that used in Deep Voice 3.

The SMRC subnetwork is closely related to the CBHG
encoder [4], differing in the number and size of convolutional
scales used, no max-pooling, use of residual connections, and
multiple stacks of multi-scale layers. We use a Gaussian mix-
ture attention, first described by Graves [19] and used in sev-
eral speech related papers [3, 29, 30], though we utilize soft-
plus activation for the mean-step parameter finding that it im-
proved stability in early training.

Our decoder LSTMs utilize cell dropout [21] as seen
in prior work [31, 32]. Unlike Tacotron [4], we do not
use multi-step prediction, convolutional layers in the mel-
decoding stage, or Griffin-Lim inside the learning pathway.
Audio processing closely resembles Tacotron 2 [5] overall,
though we precede conditional WaveNet with a computation-
ally efficient two stage L-BFGS and Griffin-Lim inference
pipeline for quality control, and as an alternative to neural
inversion.

4. EXPERIMENTS

The model is trained on LJSpeech [33], a curated subset of
the LibriVox corpus [9]. LJSpeech consists of 13, 100 audio
files (comprising a total time of approximately 24 hours) of
read English speech, spoken by Linda Johnson. The content
of these recordings is drawn from scientific, instructional, and
political texts published between 1893 and 1964. The record-
ings are stored as 22.05 kHz, 16 bit WAV files, though these
are conversions from the original 128 kbps MP3 format.
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Character level information is extracted from audio tran-
scriptions after a normalization and cleaning pipeline. This
step includes converting all text to lowercase along with ex-
panding acronyms and numerical values to their spelled-out
equivalents. Phonemes are then extracted from the paired
audio and character samples, using a forced alignment tool
such as Gentle [34]. This results in character and phoneme
information aligned along word level boundaries, so that ran-
domly mixed linguistic sequences can be sampled repeatedly
throughout training. When using representation mixing for
training, we choose between characters and phonemes with
probability .5 for each word in all experiments.

Audio Processing 22.05 kHz 16 bit input, scale between (−1, 1),
log mel spectrogram 80 mel bands, window size
512, step 128, lower edge 125 Hz, upper edge
7.8 kHz, mean and std dev normalized per feature
dimension after log mel calculation.

Embeddings vocabulary size (v) 49, 49, 2, embedding dim 15,
truncated normal 1√

v

SMRC 3 stacks, stack scales 1 × 1, 3 × 3, 5 × 5, 128
channels each, batch norm, residual connections,
ReLU activations, orthonormal init

Enc Bidir LSTM hidden dim 1024 (128×4×2), truncated normal
init scale 0.075

Pre-net 2 layers, hidden dim 128, dropout keep prob 0.5,
linear activations, orthonormal init

Attention LSTM num mixes 10, softplus step activation, hidden
dim 2048 (512×4), trunc norm init scale 0.075

Decoder LSTMs 2 layers, cell dropout keep prob 0.925, truncated
normal init scale 0.075

Optimizer mse, no output masking, Adam optimizer, learn-
ing rate 1E − 4, global norm clip scale 10

Other TBPTT length 256, batch size 64, training steps
500k, 1 TitanX Pascal GPU, training time 7 days

Table 2. Architecture hyperparameter settings

4.1. Log Mel Spectrogram Inversion Experiments

We use a high quality implementation of WaveNet, including
a pre-trained model directly from Yamamoto et. al. [28]. This
model was also trained on LJSpeech, allowing us to directly
use it as a neural inverse to the log mel spectrograms pre-
dicted by the attention-based RNN model, or as an inverse to
log mel spectrograms extracted from the network predictions
after further processing. Ultimately combining the two stage
L-BFGS and modified Griffin-Lim pipeline with a final condi-
tional WaveNet sampling pass demonstrated the best quality,
and is what we used for the user study shown in Table 3.

4.2. Preference Testing

Given the overall system architecture, we pose three primary
questions (referenced in column Q in Table 3) as a user study:

1) Does representation mixing (RM) improve character-
based inference over a baseline which was trained only on

characters?
2) Does RM improve phoneme with character backoff for

unknown word (PWCB) inference over a baseline trained on
fixed PWCB?

3) Does PWCB inference improve over character-based
inference in a model trained with representation mixing?

To answer these questions, we pose each as a preference
test by presenting study participants with 20 paired choices.
Each user was instructed to choose the sample they preferred 1

. The 20 tests were chosen randomly in a pool of 123 possible
tests covering all three question types, from 41 possible sen-
tences. Presentation order was randomized for each question
and every user. The overall study consisted of 22 users and
429 responses across all categories (some users didn’t select
any preference for some questions).

Q Model A Model B C. A Total % A
1 RM (char) Char 101 137 73.7%
2 RM (PWCB) PWCB 106 145 73.1%
3 RM (PWCB) RM (char) 86 147 58.5%

Table 3. A / B user preference study results. RM uses approach in
parenthesis at inference time. Columns ”C. A” and ”% A” indicate
the number and percentage of users which preferred Model A.

We see that users clearly prefer models trained with repre-
sentation mixing, even when using identical information for
inference. This highlights the data augmentation aspects of
representation mixing, as regardless of information type rep-
resentation mixing (RM) gives clearly preferable results com-
pared to static representations (Char, PWCB). The preference
of representation mixing over static PWCB also means that
introducing phoneme and character information without mix-
ing is less beneficial than full representation mixing.

It is also clear that for representation mixing models, pro-
nunciation information (PWCB) at inference gives preferable
samples compared to character information. This is not sur-
prising, but further reinforces the importance of using pronun-
ciation information where possible. Representation mixing
enables choice in input format, allowing the possibility to use
many different inference representations for a given sentence
with a single trained model.

5. CONCLUSION

This paper shows the benefit of representation mixing, a sim-
ple method for combining multiple types of linguistic infor-
mation for TTS synthesis. Representation mixing enables in-
ference conditioning to be controlled independently of train-
ing representation, and also results in improved quality over
strong character and phoneme baselines trained on a publi-
cally available audiobook corpus.

1 https://s3.amazonaws.com/representation-mixing-site/index.html
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