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ABSTRACT
Regularization approaches, such as multi-task learning and
dropout, prevent overfitting and improve generalization abil-
ity. Speech emotion recognition suffers from insufficiently
transcribed databases, where labels are subjectively anno-
tated. Because emotions are a more universally recognized
language, the paralinguistic feature space of emotional speech
can be better generalized, even across substantially hetero-
geneous languages. We investigate the effect of regular-
ization and normalization frameworks on two emotional
speech databases, the IEMOCAP for English and the JTES
for Japanese. We obtain absolute gains of unweighted aver-
age recall over ten runs (1.48% for the IEMOCAP and 1.03%
for the JTES) and achieve a maximum of 59.49% on the
IEMOCAP. From comparative experiments, we confirm that
dropout and multi-task learning strategies are effective for
multilingual speech emotion recognition, and common nor-
malization over two languages leads to further improvement
under all conditions, which suggests that better generalization
is available even when two highly heterogeneous languages
are merged.

Index Terms— speech emotion recognition, data normal-
ization, generalization, multi-task learning, multilingual

1. INTRODUCTION

Speech emotion recognition (SER) is essential for empathic
human-machine communication. Since the dictation perfor-
mance of automatic speech recognition (ASR) has reached the
stage of practical use, there has been growing interest in how
to make machines more human-like and how to enhance smart
communication between human and machine. However, in
contrast to ASR, SER still suffers from low resources. Emo-
tional speech databases are extremely limited, as emotions
in speech are expressed and perceived subjectively. Whether
emotions serve as a universal language is still debated in
the psychology and cognitive neuroscience fields, depending
on which indicators researchers used to measure emotions
- verbal or nonverbal expressions, facial, vocal, or gestural
signals, and expressions or perceptions [1]. Setting aside this
debate, it is worth considering how emotions expressed in
different languages can be integrated into SER tasks. Unlike
linguistic information, a paralinguistic feature space can be

implemented robustly across languages. Through a series
of INTERSPEECH Paralinguistic Challenges, paralinguistic
information is enriched and widely adopted to improve SER
performance [2, 3, 4]. Furthermore, recent deep-learning-
based approaches have yielded remarkable improvements
in SER performance [5, 6, 7, 8, 9, 10]. In [5], researchers
adopted deep neural network (DNN) for SER using a gen-
eralized discriminant analysis; the results on nine databases
showed significant improvement over support vector ma-
chines (SVM). In [6], the authors proposed using a DNN to
estimate emotion states for each speech segment in an utter-
ance, constructing an utterance level feature from segment-
level estimations and then employing an extreme learning
machine to SER. Their experimental results indicated that
a DNN-based approach substantially improved the perfor-
mance of SER. In [7], the authors compared recurrent neural
networks (RNN)-based SER system with a DNN-based SER
system. In [8], researchers also reported RNN-based transfer
learning from dimensional to categorical emotion attributes
of a single emotional speech database. In [9], the authors
compared several DNN-based and RNN-based systems over
SVM-based SER. In [10], researchers proposed attentive con-
volutional neural network (CNN) for SER, which combines
the benefits of CNN and attention mechanisms. This previous
research clarifies that a large amount of data is needed to
improve SER performance, especially in the case of deep-
learning-based approaches. Consequently, we investigate the
generalization effect for multilingual SER, using a recently
released, large-scale Japanese database, the Japanese Twitter-
based Emotional Speech (JTES) [11], and a widely used
English database, the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) speech database [12].

2. RELATED WORK

In this work, we investigate multilingual SER across two
highly heterogeneous languages, English and Japanese. Emo-
tions are influenced by culture and society, and therefore
emotional speech databases have been developed and con-
structed heterogeneously [5, 13, 14]. Thus, multilingual SER
is a challenging but implementable task. In [15], researchers
applied data normalization via histogram equalization to re-
move cross-speaker and cross-language variability for SER.
In [16], the authors presented a comprehensive overview us-
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ing eight languages from four language families, showing
that cross-language SER is feasible but has notably lower
accuracy than mono-lingual SER. In [13], researchers first
applied automatic language identification for model selection
and then performed SER on a language-dependent model.
Most recently, [17] explored cross-lingual and multilingual
speech emotion recognition in English and French; they found
that multilingual SER was feasible without adaptation to the
language and presented promising results for cross-lingual
training, followed by fine-tuning of the target language.

Another difficulty of SER is that classifiers are easily
overfitted because there is so little training speech, much
less than that for current ASR. Multi-task learning (MTL) is
introduced to improve generalization ability [18] and has
also been recently adopted in SER [19, 20, 21, 22]. In
[19, 20], the multi-task is composed of arousal, valence,
and dominance, three dimensional components of emotion.
In [21], researchers adapted shared hidden layers (SHLs)
to the task of SER, setting the multi-task with nine hetero-
geneous, emotion-related tasks in three different languages
(English, German, and Danish). However, as their multi-task
is composed only of emotion-based components, SHLs can
be generalized over various languages but may be specified
on emotion. In [22], the authors built an attention-based,
weighted pooling framework with MTL for emotion recogni-
tion, where the multi-task is composed of emotion, speaker,
and gender but is trained only in one database. In this work,
we set three different tasks in MTL - language, gender, and
emotion classifications - using two highly heterogeneous
languages, English and Japanese.

3. GENERALIZATION METHODS

3.1. Multi-task learning
Multi-task learning (MTL) can be interpreted as implicit regu-
larization, as it improves generalization ability [18]. In MTL,
the output layer of multiple tasks can be composed of several
task-specified output layers, as depicted in Fig. 1. As shown
in Fig. 1-(a), each softmax layer is assigned to a specific task
among gender, emotion, and language classifications, where
the output layers are identical to the softmax layers. Each par-
alinguistic feature xi has three labels, which are three one-
hot vectors indicating language, gender, and emotion sepa-
rately. The output yi = φ(xi) of the MTL on a paralinguis-
tic feature vector xi is divided into sub-vectors for each task
{1, · · · , c, · · · , C}:

yi =
[
y
(1)
i ; · · · ;y(c)

i ; · · · ;y(C)
i

]
(1)

Because each paralinguistic feature xi has multiple task-
specified labels z

(c)
i , the loss function is a weighted sum of

the multiple task-specified losses, calculated as:

LMTL =
∑
i

∑
c

αc(y
(c)
i , z

(c)
i ) (2)

where αc is a weight for each task, usually determined by
an empirical optimization method. In this work, we weight all
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Fig. 1. Two multi-task networks. (a) The output layer is com-
posed of three task-specified softmax layers; (b) each node of
one softmax layer contains two tasks, language and emotion.
losses equally, to allow for substantial comparison. As shown
in Fig. 1-(b), the network has one softmax layer, where each
node has two types of information: emotion and language.
Each paralinguistic feature xi has only one label, called a one-
hot vector, which indicates both language and emotion. Thus,
the loss function is calculated by one-hot categorical entropy
from the softmax layer in training. For recognition, first pos-
terior probabilities are calculated for each node of the soft-
max layer and the subsequent task-specified sum pooling lay-
ers merge the posterior probabilities for each task-specified
classification.

3.2. Dropout
Dropout is a simple and effective way to prevent DNN from
overfitting, where dropout randomly removes nodes of hidden
layers with the predefined rate. Dropout is widely adopted in
many classification tasks, such as image classification, ASR,
and natural language processing. The problem of overfitting
is much more serious in SER than in ASR due to the for-
mer’s limited sample of emotional speech and the variation
across speakers and annotators. Thus, generalization ability
easily deteriorates in SER. In robust SER, dropout effectively
eliminates the variability of speakers’ subjectively expressed
emotions.

3.3. Feature normalization
Feature normalization is a scaling method that is widely used
to standardize a range of features. Variation in paralinguis-
tic features of emotional speech is influenced not only by
society and culture, but also by speakers’ subjective emo-
tional expressions. In addition, compared with spectral fea-
tures, such as filterbank coefficients and mel-frequency cep-
stral coefficients (MFCC) in ASR, features used in SER such
as F0 and energy vary more widely. Furthermore, function-
als for SER are more varied than low-level descriptors (LLD)
[2, 3, 4]. In [16], researchers reported better SER perfor-
mance for the same language databases than that for cross-
language databases. They concluded that cross-language and
even cross-language-family acoustic emotion recognition is
feasible, but they recommend relying on a suitable language
resource for each desired target language. In [15], the authors
improved SER performance with multilingual databases and
data normalization. In [23], the authors applied speaker nor-

5882



malization to reduce SER variance due to speaker variation,
retaining only variance attributable to emotion variation. In
this work, we use two kinds of normalization methods: indi-
vidual normalization, where feature normalizations are con-
ducted on each individual database, and common normaliza-
tion, where features are commonly normalized by means and
variances calculated from the two databases. For both meth-
ods, feature normalization makes the values of each feature in
the databases have a mean of zero and variance of one.

4. EXPERIMENTS

4.1. Datasets
We use two speech emotion databases, the Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) database for En-
glish [12] and the Japanese Twitter-based Emotional Speech
(JTES) database for Japanese [11]. The IEMOCAP database
consists of approximately 12 hours and 33 minutes of speech
from five females and five males. For our classification ex-
periments, we only use 4,490 turns of four emotional labels.
These utterances have a majority agreement amongst the an-
notators (at least two-thirds of annotators) for the emotion
label. The IEMOCAP is a widely adopted benchmark test
for SER [9, 10, 24, 25, 26]. The JTES database consists of
about 23 hours and 31 minutes, where 50 spoken sentences
of each emotion are acted out emotionally by 50 females and
50 males. In this work, the emotion annotation schemes of
two databases in English and Japanese have four common
emotion categories: {anger, happiness/joy, neutral, sadness}.
Happiness in the IMEOCAP database is annotated as joy in
the JTES database.

4.2. Experimental setup
We use the openSMILE toolkit 2.3.0 to extract a set of 1,582
features [4]. The feature set was introduced in the INTER-
SPEECH 2010 Paralinguistic Challenge [2]. We conduct
our experiments using five-fold cross-validation, using one
IEMOCAP session as a test set and the other four sessions
as a training set. This method ensures that the models are
trained and tested on speaker-independent sets. For a com-
parison experiment, the JTES database equally divides the

Table 1. Number of emotion utterances per category in the
IEMOCAP and the JTES databases.

Database IEMOCAP JTES
Language English Japanese

Anger 1,103 5,000
Happiness 595 5,000

Neutral 1,708 5,000
Sadness 1,084 5,000

Total turns 4,490 (of 10,039) 20,000
Length 5h 36m (of 12h 33m) 23h 31m

# of speakers 10 (f:5, m:5) 100 (f:50, m:50)
Emotion scripted/improvised acted
Speech fixed/free fixed

100 speakers into five sessions. As an evaluation measure, we
use unweighted average recall (UAR) [3]. We run the exper-
iments ten times with different initial parameters for twenty
DNN architectures; the results are compared by averaging ten
UAR values. The twenty DNN architectures are composed
of varied hidden layers, 1024, 512, 256, and 128 nodes, and
from one to five layers.

5. RESULTS

First, we evaluate the monolingual and cross-lingual perfor-
mance, wherein feature normalization and training are con-
ducted on each individual database. We then evaluate the ef-
fectiveness of adopting dropout and common normalization.
As shown in the second row of Table 2, the baseline perfor-
mance of monolingual SER is 57.54% average UAR for the
IEMOCAP and 80.17% for the JTES. Because the emotions
are acted, the performance of the JTES is better than that of
the IEMOCAP. For the cross-lingual experiments, the perfor-
mances are substantially degraded without adaption or addi-
tional fine-tune training, as shown in the first row of Table 2.
When we adopt dropout with a rate of 0.5, the performances
of the IEMOCAP are improved in both normalization meth-
ods, but those of the JTES are degraded. For the IEMOCAP,
the UARs increase from 57.54% to 58.79% with individual
normalization and from 58.43% to 59.02% with common nor-
malization, while the UARs decrease from 80.17% to 79.77%
and from 81.21% to 81.16% for the JTES, respectively. The
results show that dropout for SER is effective, but that addi-
tional costs are needed to optimize hyper-parameters such as
dropout rate or epoch numbers. By adopting common nor-
malization instead of individual normalization, in both the
IEMOCAP and the JTES and with and without dropout, the
UARs are consistently improved, from 57.54% to 58.43%
and from 58.79% to 59.02% for the IEMOCAP, and for the
JTES increasing from 80.17% to 81.21% and from 79.77% to
81.16%. Finally, we achieve 59.49% maximum UAR for the
IEMOCAP (which outperforms values in previous research
[24, 26]) and 81.44% maximum UAR for the JTES.

Table 2. Performance of cross-lingual and monolingual SER.
The average UARs (%) with standard error are estimated over
10 runs and are the best among 20 DNN architectures. The
maximum among 200 UARs is indicated in parentheses.

IEMOCAP JTES

Cross-lingual 42.68±0.11 39.84±0.08

(43.57) (41.85)
Monolingual 57.54±0.14 80.17±0.04

Individual normalization (58.42) (80.35)

+ dropout (rate=0.5) 58.79±0.12 79.77±0.06

(59.43) (80.18)
Monolingual 58.43±0.14 81.21±0.05

Common normalization (59.11) (81.44)

+ dropout (rate=0.5) 59.02±0.07 81.16±0.08

(59.49) (81.61)
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Table 3. Performance of multilingual SER. The average
UARs (%) with standard error are estimated over 10 runs and
are the best among 20 DNN architectures. The maximum
among 200 UARs is indicated in parentheses.

IEMOCAP JTES
Two task-specified softmax layers 57.13±0.09 79.75±0.04

(Emotion and language) (57.82) (79.96)
Two task-specified softmax layers 57.03±0.16 79.50±0.05

(Emotion and gender) (57.68) (79.76)
Three task-specified softmax layers 55.99±0.19 78.19±0.05

(Emotion, language and gender) (57.05) (78.50)
One softmax layer × 4 nodes 57.06±0.16 79.64±0.05

(Four emotions on both language) (57.79) (79.95)
One softmax layer × 8 nodes 58.02±0.17 80.47±0.05

(Four emotions per each language) (58.88) (80.70)
One softmax layer × 16 nodes 57.42±0.10 78.78±0.06
(Four emotions per each language (58.15) (79.19)
and gender )

Next, we evaluate the multilingual SER performance,
based on adopting common normalization. Table 3’s top
three rows show results from the performance of the multi-
task DNNs, which are composed of multiple task-specified
softmax layers. The third row, with three task-specified soft-
max layers, is depicted in Fig. 1-(a); the first and second
rows present the variants of Fig. 1-(a), where the softmax
layers are specified to two tasks. Due to the equally assigned
weights of the loss function in Eq. (2), the performances are
degraded from the monolingual SER performance in the sec-
ond row of Table 2. These degraded performances show that
empirical optimization of the loss function is needed when
the SHL is used for generalization. The bottom three rows
in Table 3 present the performance of the multi-task DNNs
with one softmax layer, where the network in the fifth row is
depicted in Fig. 1-(b) and the fourth and sixth rows present
the variants of Fig. 1-(b). Surprisingly, multilingual SER as

(a) IEMOCAP indiv. norm.

(b) IEMOCAP comm. norm.

(c) JTES indiv. norm.

(d) JTES comm. norm.

Anger

Happiness

Neutral

Sadness

Fig. 2. Visualization of four emotions by t-SNE, where a par-
alinguistic feature, xi is mapped by f : R1582→R2.

Table 4. Recalls (%) for each emotion, improved by changing
individual to common normalization.

IEMOCAP JTES
Norm. Indiv. Comm. Indiv. Comm.
Anger 78.24 79.06 83.10 83.44
Happiness 32.44 28.57 73.80 75.32
Neutral 54.27 58.20 81.32 82.80
Sadness 68.73 72.14 83.16 84.18
UAR 58.42 59.49 80.35 81.44

presented in the fifth row of Table 3 performs better than the
monolingual SER presented in the second row of Table 2, for
both the IEMOCAP and the JTES. These improved perfor-
mances of monolingual SER in the fourth and fifth rows of
Table 2 and of multilingual SER in the fifth row of Table 3
show that common normalization enhances generalization of
the network. Here, we find that emotional speech of various
language databases can be used to improve generalization
ability by common normalization.

Finally, the t-distributed stochastic neighbor embedding
(t-SNE) [27] graphs of the normalized feature are shown in
Fig. 2, where the two left-most distributions depict 4,490
turns of the IEMOCAP and the two right-most distributions
depict 20,000 turns of the JTES. The two right-hand distribu-
tions of the JTES reveal that the feature space for male and
female is divided into two and that the distributions have iso-
lated speaker space, because the JTES is performed by 100
speakers. The two top-most distributions in Fig. 2 are in-
dividually normalized in each database, and the two bottom-
most distributions are commonly normalized for all data in
the two databases. In the JTES distributions, it is hard to find
a difference between normalization methods. However, in the
distributions of the IEMOCAP, for the ability to discriminate
among three of the emotions - anger, neutral, and sadness - is
improved. Happiness, indicated by the color orange, is widely
superimposed on the other three emotions such that it is dif-
ficult to discriminate among them. The improved generaliza-
tion ability is shown in Table 4, which presents detailed recall
values for each emotion class. All recalls are improved by
common normalization, while only one recall value (that is of
happiness for the IEMOCAP) sees its performance degraded.

6. CONCLUSIONS

In this study, we investigated the generalization effect of
multilingual SER on two highly heterogeneous languages,
English and Japanese. We confirmed that the performance
of monolingual SER was improved by common normaliza-
tion performed in two databases. Furthermore, we achieved
slightly better performance in the multilingual SER than in
monolingual SER, using MTL (with one softmax layer and
eight nodes) and common normalization. We found that,
although emotions vary across societies, cultures, and lan-
guages, a multilingual SER system is feasible.
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