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ABSTRACT

We describe the development of a sentiment analysis system for cus-
tomer service calls, starting with the data acquisition and labeling,
and proceeding to the algorithmic information extraction and mod-
eling process from both spoken words and their acoustic expression.
The proposed system is based on the combination of multiple acous-
tic and lexical models in a late fusion approach. Acoustic aspects of
sentiment are captured by utterance-level features based on aggre-
gated openSMILE and raw cepstral features, and further augmented
with an energy contour model. Lexical aspects are captured by back-
off n-gram language models. These models are found to combine
effectively, showing different strengths as pertains to positive and
negative sentiment detection.

Index Terms— sentiment analysis, audio feature extraction,
acoustic modeling, language modeling, multimodal fusion

1. INTRODUCTION

Sentiment analysis has recently gained much interest in the paralin-
guistic processing world. It focuses on developing techniques for
automatically recognizing the polarity (positive/neutral/negative) of
human emotional states or attitudes expressed in natural language.
An applicable field for sentiment analysis is in customer support
conversations. As a forward-facing function, customer support is
critical among other things in maintaining a company’s customer re-
lations. These conversations are dyadic, involving a customer and
an agent, and typically concern the customer’s issues with products
or services. Therefore, special focus should be placed on detecting
negative emotions, such as frustration, annoyance, or anger. Au-
tomatic sentiment analysis can either detect problems in real-time
(e.g., leading to escalation), or aid in post-hoc review and analytics
of customer-agent interactions. In the context of automated customer
dialog, detected sentiments could affect the dialog strategies.

Human oral communication consists of both lexical and acoustic
content. The lexical part is the message as conveyed by the words
spoken, whereas the acoustic part cues encode how this message is
delivered, e.g., by differential use of prosody. Meaning can be al-
tered depending on subtle changes in these cues. Thus, it is expected
that emotion and sentiment recognition would benefit from consid-
ering both lexical and acoustic features.

In this paper we explore architectures for developing a senti-
ment recognizer on real-world call center data using acoustic and
lexical cues. Such a scenario involves a series of challenges such
as the heavily imbalanced data, or sociocultural phenomena such as
sarcasm. Most systems described in the literature work with acted,
high-quality data, where sentiment analysis is easier. Our work is
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among the first to address these issues on real-world, telephone qual-
ity data. We first develop individual acoustic and lexical models,
then perform late fusion to significantly improve results over the in-
dividual models.

Some prior work on sentiment analysis for customer support
calls was performed on text transcribed from acted calls [1]. As for
acoustic sentiment analysis, researchers have worked with frame-
level [2, 3] or utterance-level features [4]. Two of the approaches
regarding the fusion of multiple knowledge sources are early and
late fusion [5, 6, 7]. There is also extensive work on fusion methods
for sentiment and emotion analysis [8, 9, 10].

2. DATA COLLECTION AND ANNOTATION

The dataset is created from recorded Microsoft customer sup-
port calls, including both B2C (business-to-consumer) and B2B
(business-to-business) interactions, and for a range of products and
services. It consists of 1957 sessions in total. Each conversation has
been automatically segmented into utterances, and separated into
agent and customer speech based on channel (although occasional
mix-ups occur due to crosstalk or processing glitches). An initial
transcription pass is done automatically, followed by human tran-
scription. For the purposes of our task, we will use only the audio
data from the customer side.

2.1. Reference label creation

Each utterance is labeled for sentiment by three judges in the Mi-
crosoft UHRS crowd-sourcing system. All judges must pass a qual-
ifying test, concurring with a ‘gold set’ of labeled utterances at least
75% of the time. Judges listen to the entire conversations, one ut-
terance at a time. Additionally, human-transcribed text is presented
on-screen for both current and context utterances (three previous and
three following). The context displayed includes both agent and cus-
tomer utterance.

Based on this information, judges label each utterance on a five-
point scale: Clearly Positive, Somewhat Positive, Neutral, Somewhat
Negative, and Clearly Negative. Additionally, there are three labels
for utterances that are not part of the sentiment task: Agent Speech,
for agent-spoken utterances; Can’t Label, for poor-quality or non-
speech audio; and NIS (Not Intended for Service), for speech not
directed to the agent (“side speech”).

Reference labels are created based on the following process:

1. Combine labels: Somewhat and Clearly Positive/Negative to
Positive/Negative; Agent Speech, Can’t Label, NIS to NA.

2. Discard utterances marked as NA by a majority (at least two)
of the judges.
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Table 1. Examples of reference label creation
Label 1 Label 2 Label 3 Reference
Neutral Clearly Positive Somewhat Positive Positive
Can’t Label Neutral Neutral Neutral
Neutral Somewhat Negative Somewhat Positive Removed
Agent Speech Agent Speech Somewhat Positive Removed

3. Discard utterances without majority agreement on one of
{Positive, Neutral, Negative}.

Table 1 provides examples of the filtering process. The final ref-
erence label set contains 111,665 utterances out of 122,364 (8.7%
removed), labeled on a three-point sentiment scale.

2.2. Analysis of dataset statistics

As is common for linguistic datasets involving marked and un-
marked cases, the classes are heavily imbalanced, as shown in Ta-
ble 2. Metrics and training procedures described later are designed
to deal with this imbalance.

Inter-annotator agreement (before filtering, after collapsing to
three classes) is shown in Table 3. The metric used is Fleiss’ kappa
[11], a generalization of Cohen’s kappa for multiple labelers in
which each pair of labels for an item is treated as a potential agree-
ment or disagreement. As in Cohen’s kappa, the statistic expresses
the relative difference between observed and chance agreement,
ranging from 0 to 1. Judges overwhelmingly prefer labeling utter-
ances as Neutral over Positive or Negative. κ is only 0.48, whereas
values over 0.6 are desirable. Human agreement on matching refer-
ence labels is 84.45% UAR (unweighted average recall), a measure
of accuracy simulating equal class priors that is commonly used for
emotion recognition tasks. It is clear that sentiment classification on
this dataset is difficult even for the human judges.

Manual inspection of the labeler disagreements reveals that er-
rors can be categorized in a few groups. A common error is miss-
ing the tone of voice; for example, sarcasm causes a mismatch be-
tween the words said and the sentiment conveyed. Another is mark-
ing polite statements, such as ”thank you” and ”have a nice day”
as Positive—these are Neutral unless the customer sounds like they
mean it. Sometimes, judges assign Negative to a matter-of-fact de-
scription of a frustrating situation. Other cases include interpreting
profanity as Negative, laughs as Positive, and failing to consider con-
versational context. While our task instructions attempted to draw
attention to all of these common pitfalls, future labeling efforts could
benefit from training judges more thoroughly for problematic cases.

2.3. IEMOCAP Dataset

Although our target task is sentiment, not emotion recognition, we
chose an emotion recognition task to validate our acoustic models,
since public datasets and prior results are available for the latter
task. The IEMOCAP dataset [12] consists of dyadic interactions be-
tween actors. There are five sessions, each with a male and a female
speaker, for 10 unique speakers total. As in [4], we consider only ut-
terances with majority agreement ground-truth labels, and only those
labeled happy, sad, angry or neutral. We combine happy and excited
for the happy category. The final dataset contains 5531 utterances
(1103 angry, 1708 neutral, 1084 sad, 1636 happy).

Table 2. Reference label distribution
Label Count Percent
Neutral 103906 93.1%
Negative 5733 5.1%
Positive 2026 1.8%

Table 3. Inter-annotator agreement (Fleiss’ kappa)
Positive Neutral Negative NA κ

Positive 6940 9151 185 232 0.42
Neutral 9151 555868 26173 16980 0.91
Negative 185 26173 20266 818 0.43
NA 232 16980 818 34762 0.66

3. SYSTEM DESCRIPTION

In designing the sentiment analysis system, we experimented with
both acoustic and lexical models. Our acoustic model based on
utterance-level features is compared to a state-of-the-art frame-level
system [3]. We trained two lexical models based on backoff n-gram
language models, one for automatic (ASR) transcriptions and one
for human transcriptions. Additionally, we trained a prosodic model
modeling energy dynamics over the utterance. Finally, we performed
late fusion of the individual models.

3.1. Metrics Used

There are two formulations of this sentiment analysis problem.
Straightforward is a three-way classification: given an input utter-
ance, predict an output label from {Negative, Neutral, Positive}.
To address heavy class imbalance, the metric used is UAR, which
is equivalent to class-balanced label accuracy. We also applied a
2-class detection framework and evaluated two models: Positive
versus non-Positive and Negative versus non-Negative. The class-
prior-invariant metric here is equal error rate (EER), the point at
which false detection rate equals miss rate based on thresholding.

3.2. Acoustic Model

The acoustic model is concerned with paralinguistic features– how
something is said. Audio files are standardized to a 16kHz sampling
rate. For each utterance, we extract 988 features using the emobase
feature set from openSMILE [13]. This consists of low-level de-
scriptors such as intensity, loudness, Mel-frequency cepstral coef-
ficients, and pitch. For each low-level descriptor, functionals such
as max/min value, mean, standard deviation, kurtosis, and skewness
are computed. Finally, global mean and variance normalization are
applied to each feature, using training set statistics. These features
serve as inputs to a deep neural network classifier implemented in
PyTorch [14]. The model thus captures acoustic-prosodic features
aggregated over the utterance.

3.3. Cepstral Model

We compare the above model to a previously developed state-of-
the-art system which we term the cepstral model [3]. This system
uses each utterance as a mini-batch of frames, then mean-pools the
hidden activation layers to obtain an utterance-level representation.
Silence frames are filtered out, so that training is done using only
frames with voice activity. Twenty-five frames are selected for each
utterance, with 58 features per frame, including log-mel spectrum,
pitch, and voice, for 1450 features per utterance (vs. 988 features in
our acoustic model).
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3.4. Energy Contour Model

This acoustic-prosodic model specifically captures the shape of the
speech energy contour over the duration of the utterance [15]. Zeroth
and first-order Mel frequency cepstral coefficients are computed ev-
ery 10 milliseconds, and the contours of these values over windows
of 200 ms are characterized by computing a discrete cosine trans-
form (DCT) in the temporal domain. The first 5 DCT values for
cepstral coefficient c0 are retained, as are the first 2 DCT values for
c1, resulting in a 7-dimensional feature vector for every 200 ms win-
dow. For classification purposes we train Gaussian mixture models
for each target class, and use length-normalized likelihoods as dis-
criminant scores [15] .

3.5. Lexical Classifier

The lexical content of utterances gives important cues to sentiment,
and word-based classifiers exploit this fact. To obtain a sentiment
score that may be combined statistically with other knowledge
sources we trained statistical language models for each target class.
The models are backoff trigrams with Witten-Bell smoothing, esti-
mated over the full training set vocabulary. The class log likelihoods
divided by the utterance lengths serve as discriminant scores [16].

Our automatic transcripts came from a generic speech recogni-
tion service that was not adapted to the customer service domain. For
comparison purposes we also built a lexical classifier on the human
utterance transcripts, simulating close-to-perfect speech recognition.

3.6. Model Fusion

Humans use both acoustic and lexical modalities to make informed
decisions about sentiment of statements. A statistical model com-
bining both modalities should likewise make better decisions. Two
approaches are early (feature-level) or late (decision-level) fusion.
In early fusion, joint feature vectors are created by combining the
features from multiple modalities and fed into a unified model. In
late-fusion, models are independently built for each modality, and
outputs of these models are used as features to train a downstream
combined model.

Early fusion assumes a level of temporal synchrony between the
individual modalities, which may not be easy achieved. In contrast,
the individual models in late fusion consider features from only one
modality, obscuring time-varying properties but alleviating the as-
sumption of time synchrony.

For our setting, it is unwieldly to combine n-gram textual fea-
tures with extracted audio features at the feature level. Poria et
al. [8, 17] achieved similar results with early and late fusion of the
audio, textual, and visual modalities of IEMOCAP: 73.22% and
73.25% weighted accuracy, respectively. Therefore, we work ex-
clusively with late fusion.

The features for late fusion are the output scores of each class
from each model. For each set of scores we apply a softmax to ob-
tain the posterior probabilities. We then train a machine learning
classifier, such as logistic regression or a support vector machine
(SVM) as the fusion model. Fig. 1 depicts the fusion framework.

4. EXPERIMENTS

4.1. Validation on IEMOCAP

Adhering to the methodology of [4, 18, 19], we perform a ten-fold
cross-validation scheme, stratified by speaker. For each evaluation,

Fig. 1. Decision-level fusion framework

we use eight folds for training, one fold for early-stopping and hyper-
parameter tuning, and one fold for reporting test results. Acoustic
features and the DNN model are similar to Sec. 3.2, except that five
emotion labels are estimated, rather than three sentiment labels.

The UAR of our acoustic model is 61.74%, which may be com-
pared to the state-of-the-art of 65.70% [4]. We also tried adding
contextual features using a window of three feature vectors before
and after the current utterance, for a total of 7×988 features per ut-
terance. This brings our UAR to 64.96%. The results show that our
acoustic model, while computationally simple, yields reasonable re-
sults for emotion-related classification.

4.2. Sentiment Experiment Setup

The customer support dataset is split into training, validation, and
test sets randomly by session, with 1557, 200, and 200 (about
80/20/20%) sessions, respectively. We use the training set for
acoustic and language model training, the validation set for hyper-
parameter tuning, early stopping and fusion model estimation, and
the test set for reporting results.

There are two approaches to handling class imbalance. First, we
can resample the training set, preserving all Negative labels, over-
sampling Positives and undersampling Neutrals to the number of
Negatives. Second, we can re-weight the objective function for each
sample such that each class has the same aggregate weight. For ex-
ample, missing one Negative sentiment incurs the same loss as miss-
ing 93/5 Neutral sentiments, in inverse proportion to the class priors.

For our acoustic and lexical models, we choose the second ap-
proach, as using more data gave better results. For the cepstral model
of [3] a resampling approach was taken. 5238 utterances from the
training split are selected, with roughly equal class proportions. The
entire development and test sets are used in both approaches.

4.3. Sentiment Classification Results

Hyperparameters for our DNN on acoustic features are hidden
size=1024, hidden layers=2, initial learning rate=0.01, learning
anneal=0.75, batch size=32, dropout=0.5, activation=ReLU, opti-
mizer=SGD with momentum.

Separate lexical models are trained on both ASR and human
transcripts. Fig. 2 shows the results. (We also tried logistic re-
gression and DNNs for late fusion, but report only SVM results for
brevity.) Contextual features did not help for this dataset, likely due
to the heavy imbalance (93% Neutral) adding little distinguishing
information for individual utterances.

The cepstral model outperforms our acoustic model by 5.47%
absolutely (63.89% vs. 58.42%). The lexical model based on ASR
also achieves 63.89% UAR. A better UAR of 71.56% is achieved by
a fusion of acoustic and lexical models, slightly better (by 0.54%)
than a fusion of cepstral and lexical models. We thus find that fusion

0Chen et al. [2] propose a frame-based 3DCRNN, and report results of
64.96% using only improvised segments of IEMOCAP.
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Fig. 2. Results for sentiment classification task

mutes differences between the two acoustics-based models. Regard-
less which acoustic model is used, it is evident that acoustic and
lexical information complement each other.

Considering results from language models trained on human
transcripts, the errors incurred by ASR do affect sentiment classifi-
cation. There is a 6-7% absolute increase in UAR for both fusion
models compared to their ASR-based counterparts. Cepstral fusion
now performs 0.23% better than acoustic, but the observation about
diminished differences between acoustic models after fusion holds.

Note that the “human performance” of 84.85% is a biased mea-
sure as it was calculated with the set of judgments used to create
reference (majority) labels; we can expect independent human rela-
beling performance to be lower.

4.4. Sentiment Detection Results

As discussed in Section 3.1, for sentiment detection we generate two
models, ones for positive sentiment, and one for negative sentiment,
with EER as the metric in both cases. On these two-class problems
we train models using the same setup as above. In addition to the two
acoustic models and the lexical model, we add the energy contour
model to the model fusion. Logistic regression is used for fusion.
Fig. 3 shows detection error trade-off (DET) plots and EERs.

For Negative detection, our acoustic model (29.7% EER) per-
forms better than the Cepstral (31.7%) and lexical (33.1%) models.
Fusion of acoustic and lexical models decreases EER to 24.8%, and
including energy contours sees a further improvement to 24.6%. The
fusion results with human transcripts (“refwords”) is 21.7%.

For Positive detection, the lexical model (18.5% EER) performs
far better than the acoustic models (23.7%, 31.3%). Still, combining
acoustics with the lexical model gives the best result, as 16.4% EER.
Energy contours did not help for Positive detection. System fusion
with human transcripts gives 10.3% EER.

These results indicate that people express positivity more in their
word choices, whereas negativity is expressed more through tone of
voice. This is consistent with politeness: customers are happy to
explicitly praise helpful agents, but express displeasure indirectly.

5. CONCLUSIONS

We studied sentiment extraction from spoken utterances in a large
corpus of customer interactions with support agents. The task is
hard even for humans: individual labelers have a residual error rate
of at least 15% relative to the reference (majority) labels.

We found that automatic sentiment extraction requires both
acoustic-prosodic and lexical modeling for best results, both for

Fig. 3. Negative (top) and positive (bottom) sentiment DET plots

three-way classification and binary sentiment detection. Lexical
cues dominate acoustic ones for positive sentiment detection, but the
reverse is true for negative sentiments. A score-level combination
of both cue types is always helpful, giving about 40% relative error
reduction over a single cue type. Smaller additional gains can be ob-
tained by combining different types of acoustic features and models,
such as openSMILE-based utterance-level features with frame-level
cepstral and energy-contour models. Word-based modeling can be
effective even with high word-error rates, using matched training and
test conditions, but classification error still increases considerably
(27% relative) compared to near error-free (human) transcripts.

Plenty of future work awaits, such as neural lexical models, or
joint acoustic/lexical models, as well as comparisons with sentiment
classification in other domains.
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