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ABSTRACT
Emotions modulate speech acoustics as well as language. The lat-
ter influences the sequences of phonemes that are produced, which
in turn further modulate the acoustics. Therefore, phonemes impact
emotion recognition in two ways: (1) they introduce an additional
source of variability in speech signals and (2) they provide informa-
tion about the emotion expressed in speech content. Previous work
in speech emotion recognition has considered (1) or (2), individu-
ally. In this paper, we investigate how we can jointly consider both
factors to improve the prediction of emotional valence (positive vs.
negative), and the relationship between improved prediction and the
emotion elicitation process (e.g., fixed script, improvisation, natural
interaction). We present a network that exploits both the acoustic and
the lexical properties of phonetic information using multi-stage fu-
sion. Our results on the IEMOCAP and MSP-Improv datasets show
that our approach outperforms systems that either do not consider
the influence of phonetic information or that only consider a single
aspect of this influence.

Index Terms— Speech Emotion Recognition; Audio and
Phonemes; Convolutional Neural Networks

1. INTRODUCTION

Emotions modulate acoustic signals both explicitly, through paralin-
guistic characteristics (e.g., the tone and tempo of speech), and im-
plicitly, through the alteration of the content of speech. Therefore,
speech content is a double-edged sword in emotion recognition: the
variability it introduces to the acoustic signals makes it harder to dis-
till emotion-related cues, yet the content itself is reflective of emo-
tion. In this paper, we explicitly consider both roles of speech content
and demonstrate that, in so doing, we are able to make more accurate
predictions of emotional valence (positive vs. negative).

We present a speech emotion recognition (SER) system that
considers: (1) the acoustic variability in terms of both emotion and
speech content, here defined as sequences of phonemes, and (2) the
direct connection between emotion and phoneme sequences. We
investigate whether leveraging both (1) and (2) leads to improved
performance. We concentrate on predicting valence (the positive vs.
negative aspect of an emotional display [1, 2]) because it has been
shown to be difficult given only acoustic signals [3].

Previous research has investigated how phonemes modulate
acoustics together with emotion by exploring phoneme-level emo-
tion classification methods [4–6], or designing acoustic features
[7–11] or labels that incorporate phonetic knowledge [12]. The re-
sults of these studies showed that phonemes vary in how they are
modulated by emotion and that features designed based on phonetic
knowledge work well in emotion recognition. Recent works have
shown that emotion can be predicted directly from sequences of

phonemes without acoustic information, by modeling phoneme se-
quences like word sequences [13], using LSTM networks [14], or
multi-channel CNN networks [15]. These works have also shown
that combining utterance-level phonetic and acoustic representations
brings further improvement. However, work that considers both the
phonetic modulation of acoustics and the link between phoneme
sequences and emotions is still missing. In addition, we do not yet
know how models that exploit the acoustic and/or phonetic proper-
ties of phonemes is influenced by emotion elicitation method (i.e.,
fixed, improvised under targeted scene, spontaneous).

In this work, we seek to improve valence prediction by lever-
aging the dual-functionality of phonemes, using temporal Convo-
lutional Neural Networks. We hypothesize that adding phonetic in-
formation at different stages has different effects and that we can
exploit both the acoustic and the lexical properties using a multi-
stage fusion model that combines acoustic and phonetic information
at both feature-level (feature fusion, FF) and utterance-level (inter-
mediate fusion, IF). We investigate how models leveraging phonetic
information at different stages are influenced by the emotion elici-
tation process of the data. We test our hypothesis on the IEMOCAP
dataset [16] and the MSP-Improv dataset [17].

Our results show that our multi-stage fusion model outperforms
both FF and IF models, especially on data produced using improvi-
sations and natural interactions. We also find that both FF and IF are
beneficial compared to unimodal models, and that IF outperforms
FF. However, the advantage of modeling phoneme sequences inde-
pendently, either in the unimodal phonetic model or IF, decreases as
the lexical content becomes more spontaneous, indicating that this
advantage may come from memorizing emotionally salient patterns
in speech content. The novelty of this paper includes the presen-
tation of: (1) a multi-stage fusion approach that exploits the dual-
functionality of phonemes and (2) an investigation into the influence
of the type of lexical content on the performance of the models lever-
aging different functions of phonemes.

2. DATA

2.1. Datasets

We use two English dyadic emotion datasets: IEMOCAP and MSP-
Improv. We choose these datasets because: (1) their sizes allow us
to train neural networks; (2) they provide evaluations of valence; (3)
they contain varying lexical patterns due to the use of different emo-
tion elicitation methods, allowing us to conduct relevant analyses.
IEMOCAP: The IEMOCAP dataset consists of five sessions of
dyadic interactions, each between a male and a female actor. The
12 hours of data were segmented into 10,039 utterances accord-
ing to speaker turns. The emotions of the speakers were elicited
through scripted and improvised scenes. The lexical content of
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scripted scenes and the improvisation targets of the improvised
scenes were shared across sessions. The scripted and improvised
portions of IEMOCAP consist of 5,255 and 4,784 utterances, re-
spectively. The valence of each utterance was assessed by at least
two evaluators using a 5-point scale [16]. We create phone-level
transcriptions by force aligning the provided manual transcrip-
tions to the audio files (see Section 2.2). We exclude six utter-
ances for which forced alignment failed. We conduct experiments:
over the entire dataset (IEMOCAP-all), on only the scripted utter-
ances (IEMOCAP-scripted), and on only the improvised utterances
(IEMOCAP-improv).

MSP-Improv: The MSP-Improv corpus contains six sessions of
dyadic interactions between pairs of male-female actors. There are
nine hours of speech and 8,438 utterances. The data elicitation in-
cludes both improvisations and target sentences embedded in de-
signed scenarios. The valence of each utterance is assessed using
a 5-point scale by at least five evaluators [17]. We use the automatic
transcriptions produced by the Bing Speech API1, provided by the
creator of the dataset. We focus on the improvisations and the nat-
ural interactions and only use utterances that have transcriptions in
our experiments. This decreased our data to 5,650 utterances, which
we refer to as MSP-I+N. We choose to exclude target sentences and
not to perform experiments for the improvised and natural partitions
separately due to the limited size of the partitions.

2.2. Data Preprocessing

Labels: We convert the 5-point ratings into three categories: nega-
tive, neutral, and positive, and generate fuzzy labels for each utter-
ance as in [18, 19]. We represent each evaluation as a 3-dimensional
one-hot vector by keeping 3 as “neutral” and merging 1-2 and 4-5 as
“negative” and “positive”, respectively. We then use the mean over
the evaluations for each utterance as the ground truth. For instance,
given an utterance with three evaluations, 3, 4, and 5, we first convert
the evaluations to [0, 1, 0], [0, 0, 1], and [0, 0, 1], respectively. After
taking the mean, the ground truth label for this utterance is [0, 1/3,
2/3]. In this way, we form the problem of valence recognition as a
three-way classification task.

Acoustic Features: We extract 40-dimensional log Mel-frequency
Filterbank energy (MFB) using Kaldi [20]. The MFBs are computed
over frames of 25ms, with a step size of 10ms, as in [19, 21, 22]. We
perform speaker-dependent z-normalization at the frame-level.

Phonemes: We acquire the start and end time of each phoneme by
using forced alignment between the audio and the manual (IEMO-
CAP) or automatic (MSP-Improv) transcriptions. We use Gentle2,
a Kaldi-based forced aligner. It identifies 39 unique phonemes and
an additional “out of vocabulary” label for unrecognized sounds, re-
sulting in a 40-dimensional one-hot vector for each phoneme. The
phonetic representations are used in two different ways: (1) inde-
pendently without repetition, and (2) repeated and with the same
step-size as acoustic features. See more details in Section 3.1.

3. METHODOLOGY

3.1. Network Structures

We design our models based on the temporal Convolutional Neural
Network with global pooling (Conv-Pool) structure, which has been

1https://azure.microsoft.com/en-us/services/cognitive-services/speech/
2https://lowerquality.com/gentle/

demonstrated to perform well in [21, 22]. Figure 1 shows the archi-
tectures of our networks. These networks consist of the following
components (Figure 1(a)):

• A Conv-Pool sub-network (i.e., a 1D convolutional layer over
time and a global max-pooling layer) that generates a fixed-length
utterance-level representation from the variable-length input of
acoustic and/or phonetic features.

• A concatenation of the multiple utterance-level representations
(denoted as “Cat” in Figure 1 and “+” in model names).

• An optional dropout layer, two fully-connected layers and a soft-
max layer (denoted as FC).

There are three Conv-Pool branches in our networks: the acous-
tic branch (Ab), the phonetic branch (Pb), and the feature-fusion
branch (APb). Ab and Pb operate on variable-length MFB features
and phoneme sequences, respectively. In APb, we aim to capture
the phonetic modulations of acoustic features. We concatenate the
phoneme label with the MFBs at each frame. For example, if a spe-
cific phoneme lasts 0.1 seconds, the same one-hot vector is concate-
nated with the MFB features of the ten corresponding frames. For
audio frames with no matching phoneme, a zero-vector is used in-
stead. The number of input channels of the convolutional layer is
40, 40, and 80 for Ab, Pb, and APb, respectively. Feeding the out-
put of a single branch to the FC sub-network results in three models
(Figure 1(b)): two unimodal models (i.e., Ab FC and Pb FC), and a
multimodal single-stage feature-fusion model (APb FC).

We concatenate the outputs of Ab and Pb for joint modeling in
FC to captures the high-level interaction between the learned acous-
tic and phonetic representations. This results in our multimodal
single-stage intermediate-fusion model, Ab+Pb FC (Figure 1(b)).

We hypothesize feature fusion and intermediate fusion play dif-
ferent roles in the network. Feature fusion allows our network to
capture how phonemes modulate acoustics. However, it may not be
effective in linking speech content and emotional state, specifically,
in extracting phoneme sequences that are informative identifiers of
valence. This is because: (1) each single phoneme may be repeated
several times in order to have the same step-size with the MFBs, re-
sulting in insufficient temporal context for the phoneme sequences
in the convolution layer; (2) the input phoneme sequences are much
more sparse than the MFBs, resulting in representations dominated
by acoustic information. Intermediate fusion, on the other hand, can
more efficiently leverage the complementary emotionally salient in-
formation learned from audio and phoneme sequences. Because of
the dual-functionality of phonemes, we propose to combine them
into a multi-stage fusion model to exploit the advantages of both
techniques. This network, APb+Pb FC, concatenates the represen-
tations from APb and Pb and jointly models them in FC. In addition,
we explore another multi-stage fusion network, APb+Ab FC, which
concatenates APb and Ab for comparison. Both APb+Pb FC and
APb+Ab FC are shown in Figure 1(b).

3.2. Hyper-parameters and Training Strategy

We use ReLU as the activation function in all layers but the output
layer, where softmax is used. We select the layer size of the con-
volutional and fully-connected layers from {128, 256} as in [22].
The layer size is kept consistent throughout each model. We fix the
kernel width to 16 for Ab and APb, which is shown to perform well
on both IEMOCAP and MSP-Improv in [21]. For Pb, we select a
kernel width of 6, based on the average number of phonemes (6.38)
per English word, according to the CMU pronunciation dictionary3.

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Fig. 1. (a) A general network that illustrates all the components, including: the acoustic branch (Ab), the phonetic branch (Pb), the acoustic
and phonetic branch (APb) that combines the features of the two modalities; the concatenation of the utterance-level representations (Cat),
and a stack of dropout, fully-connected and softmax layers (FC). (b) Architectures for all models.

Besides, we incorporate an optional dropout layer after the global
max-pooling to improve generalization of the networks. The dropout
probability is selected from {0, 0.2, 0.5}, where 0 corresponds to no
dropout, and 0.2 and 0.5 are from the suggested range in [23].

We experimented using PyTorch version 0.2.0. The loss func-
tion is cross-entropy computed using the fuzzy labels. We weigh the
classes using N/(3 ∗

∑N
j=1 gt

i
j) in the loss calculation, where N is

the total number of training utterances, gtij is the value for class i
in the fuzzy ground truth label for utterance j. We train the models
using a learning rate of 0.0001 with the Adam optimizer [24].

We use Unweighted Average Recall (UAR) as the performance
measure due to unbalanced data [25]. When the ground truth has
ties, we deem predictions for any of the tied positions as correct, as
in [19]. For instance, when the ground truth is [0.5, 0.5, 0], prediction
of either 0 or 1 are correct. As a result, the chance performance of
making predictions uniformly at random is higher than 33.33%.

We use the leave-one-speaker-out evaluation setting for our ex-
periment. Both IEMOCAP and MSP-Improv are organized by ses-
sions. At each round, we left out data from a single speaker as the test
set, use data from the other speaker in the same session for valida-
tion, and use data from the remaining sessions for training. We run
each experiment five times to reduce performance fluctuation. For
each training-validation-testing combination, we select the number
of training epoch (∈ [1, 30]) by maximizing the validation UAR for
each run separately and select the layer size and dropout probabil-
ity by maximizing the validation UAR averaged over five runs. We
report the test UAR corresponding to the chosen hyper-parameters,
averaged over speakers and runs. We set the batch size to 100, and
zero-pad the features to the maximum length of each batch.

4. RESULTS AND DISCUSSIONS

We present the average test UAR for the experiments on IEMOCAP-
all, IEMOCAP-scripted, IEMOCAP-improv, and MSP-I+N in Table
1, together with the chance performance calculated by making pre-
dictions uniformly at random. For the results of each experiment, we
first test if the influence of model is significant by using a repeated-
measure ANOVA (RANOVA). We treat the per-speaker performance
as the “subject” and model as the within-subject factor. We report
the statistics in Table 1. We find that the influence of model is signif-
icant in all experiments when asserting significance at p<0.05, even
with the lower bound correction. We compare pairs of models across
experiments to understand the effect of each approach and the influ-
ence of the type of lexical content. We use Tukey’s honest test based
on the RANOVA model for these pairwise comparisons and assert
significance at p<0.05.

4.1. Unimodal Results

We find that Pb FC significantly outperforms Ab FC on IEMOCAP-
all and IEMOCAP-scripted, while Ab FC significantly outperforms
Pb FC on MSP-I+N. It is clear that Pb FC performs better than
Ab FC when all the data or a large portion of the data are scripted,
while the opposite is true when there is less control on the lexical
content of the data (i.e., improvisations and natural interactions).
In fact, Pb FC achieved the highest performance among all models
on IEMOCAP-scripted. It is interesting to see that when emotion-
related scripts are repeated across training, validation, and testing
data, additional information from the acoustic modality brings more
harm than good. This indicates that Conv-Pool with phoneme se-
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Model IEMOCAP
-all

IEMOCAP
-scripted

IEMOCAP
-improv

MSP
-I+N

Chance 45.40 46.91 44.55 36.09

Ab FC 64.04 61.18 65.00 51.84†
Pb FC 69.18∗ 78.42∗� 62.50 47.54

APb FC 67.17∗ 67.21∗ 67.68∗† 53.98∗†
Ab+Pb FC 73.33∗ † � 75.09∗� 69.13∗† 54.99∗†

APb+Pb FC 73.79∗ † � 75.34∗� 70.05∗ † � 55.98∗ † �
APb+Ab FC 67.09∗ 65.54∗ 67.44∗ 54.34∗†

F (5, 45/55) 70.3 55.4 19.6 25.6
pLB 1.52e-5 3.92e-5 1.66e-3 3.67e-4

Table 1. The average test UAR and the statistics of RANOVA (F
and pLB) for the influence of model. The best result in each ex-
periment is bolded. F (5, 45) and F (5, 55) are for experiments on
IEMOCAP and MSP-I+N, respectively. pLB is the p-value with
lower bound correction. ∗, †, and � represent that the marked model
significantly outperforms Ab FC, Pb FC, and APb FC, respectively,
using Tukey’s honest test and asserting significance at p<0.05.

quence can learn and memorize speech-content-related patterns that
are strongly associated with emotion classes, but does not work as
well as acoustics on unscripted/natural data.

4.2. Single-stage Fusion Results

The feature-fusion model (APb FC) significantly outperforms
Ab FC in all four experiments. However, APb FC only signifi-
cantly outperforms Pb FC on IEMOCAP-improv and MSP-I+N,
while shows significant performance loss on IEMOCAP-scripted. In
addition, the performance of APb FC is very stable across the dif-
ferent portions of IEMOCAP. These results support our hypothesis
that in feature fusion, the phonetic information is helpful for learn-
ing emotion-salient acoustic representations, but cannot effectively
capture the emotion-related patterns in speech content.

The intermediate-fusion model (Ab+Pb FC), on the other hand,
shows significant improvement compared to both Ab FC and Pb FC
in all experiments except for Pb FC on IEMOCAP-scripted. This
indicates that there is complementary information from representa-
tions learned separately from the audio and phoneme modalities.

The advantage of Ab+Pb FC over APb FC decreases with the
flexibility of the lexical content. Ab+Pb FC significantly outper-
forms APb FC on IEMOCAP-scripted and IEMOCAP-all, but is
only comparable to APb FC on IEMOCAP-improv and MSP-I+N.
This presents additional evidence that the memorization of patterns
in phoneme sequences is most beneficial when the elicitation relies
upon scripts. This suggests that there are multiple causes behind the
improvements over the unimodal models, via feature fusion and in-
termediate fusion, and that we may achieve further performance gain
by combining them using multi-stage fusion.

4.3. Multi-stage Fusion Results

Our proposed multi-stage fusion model, APb+Pb FC, aims to ex-
ploit the dual-functionality of phonemes. It significantly outperforms
APb FC in all four experiments. APb+Pb FC also shows consis-
tent performance improvement over Ab+Pb FC, and the advantage
is larger on data with less control over the lexical content (i.e.,
IEMOCAP-improv and MSP-I+N). This result supports our hy-

pothesis that the consideration of both the phonetic modulation of
acoustics and the connection between phoneme sequences and emo-
tions allows us to improve the performance of valence prediction.

We investigate the performance of another multi-stage fusion
model, APb+Ab FC, which merges the outputs of the feature fusion
branch and the unimodal acoustic branch. We find that APb+Ab FC
is comparable to APb FC in all experiments, and significantly
outperformed by Ab+Pb FC on IEMOCAP-all and IEMOCAP-
scripted. The fact that repeatedly adding the acoustic modality does
not improve performance is in line with our hypothesis that the
learned representation from fused acoustic and phonetic features is
dominated by the audio modality.

We compare our best UAR with the state-of-the-art result us-
ing the same label processing, training-validation-testing folds, and
evaluation method [19]. We find that APb+Pb FC outperforms
the intermediate-fusion of the acoustic and lexical modalities us-
ing outer-product in [19] by 4.4% in UAR on IEMOCAP-all. This
further demonstrates the effectiveness of our method. We note, how-
ever, that we cannot attribute the performance gain completely to the
use of phoneme sequences and multi-stage fusion. The differences
in network structure (e.g., Conv-Pool vs. GRU, dropout, activation
function), hyper-parameters (e.g., layer size, kernel width), opti-
mizer, and training paradigm all have important influence on the
final results.

5. CONCLUSIONS

In this paper, we explore the impact of incorporating phonetic knowl-
edge into acoustic valence recognition. We propose to repeatedly add
phonetic features, at both feature-level and utterance-level, into a sin-
gle temporal convolutional neural network. We show that this multi-
stage fusion model outperforms all other models on IEMOCAP-all,
IEMOCAP-improv, and MSP-I+N, even when the transcriptions are
estimated using ASR systems (i.e., MSP). The gain over the most
accurate single-stage fusion network is the greatest given impro-
vised and natural interactions. This demonstrates efficacy of this ap-
proach given imperfect transcriptions and speech data that are col-
lected without reliance upon a script. Finally, the proposed system
outperforms the state-of-the-art approach from the literature.

Our results also show that the phonetic branch helps the net-
work leverage the direct link between emotion and speech content
contained in phoneme sequences. Feature fusion can capture the
phonetic modulation of acoustics, but the resulting representation
is dominated by the acoustic modality. The advantage of interme-
diate fusion over feature fusion decreases when the lexical content
becomes more spontaneous. These findings support our assumption
that feature fusion and intermediate fusion exploit acoustic and lex-
ical properties of phonemes, respectively. Future work will explore
the feasibility of performing integrated phone recognition coupled
with emotion recognition.
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