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ABSTRACT 
 

Detection of depression from speech has attracted significant 

research attention in recent years but remains a challenge, 

particularly for speech from diverse smartphones in natural 

environments. This paper proposes two sets of novel features based 

on speech landmark bigrams associated with abrupt speech 

articulatory events for depression detection from smartphone audio 

recordings. Combined with techniques adapted from natural 

language text processing, the proposed features further exploit 

landmark bigrams by discovering latent articulatory events. 

Experimental results on a large, naturalistic corpus containing 

various spoken tasks recorded from diverse smartphones suggest 

that speech landmark bigram features provide a 30.1% relative 

improvement in F1 (depressed) relative to an acoustic feature 

baseline system. As might be expected, a key finding was the 

importance of tailoring the choice of landmark bigrams to each 

elicitation task, revealing that different aspects of speech articulation 

are elicited by different tasks, which can be effectively captured by 

the landmark approaches. 

Index Terms— Depression classification, landmark bigrams, 

speech articulation, smartphone speech, naturalistic environments. 
 

1. INTRODUCTION 
 

The increasing adoption of smartphones coupled with the 

emergence of voice assistants provides unprecedented opportunities 

for new automated medical screening methods through sampling of 

human voice [1], [2], [3], [4], motivated by the reported 10-15% of 

the population suffering from mental disorders [3]. However, 

lingering challenges to automated speech-based screening via 

smartphones remain, due in large part to the detrimental impact of 

various handset characteristics and noisy environments from which 

audio samples are recorded [5]. This impact of handset variability is 

particularly evident in systems using conventional spectral-based 

features [6], [7]. Thus, vocal biomarkers robust to these variabilities 

need exploration, and one candidate is speech landmarks.  

Speech landmarks are event markers associated with 

articulation of speech. They offer an alternative speech processing 

framework focused on abrupt acoustic changes in speech 

articulation that remain relatively discernable even in the presence 

of variability introduced by diverse smartphone hardware and 

background environments. Moreover, studies have shown that 

speech production, which involves complex cognitive planning and 

motoric muscular actions, can be impacted by depression in various 

ways [8], including cognitive impairment, phonation and 

articulation errors, articulatory incoordination [9], disturbances in 

muscle tension, phoneme rates [10], and altered speech quality and 

prosody. Landmark biomarkers can indicate many of these 

attributes, and therefore offer a unique potential to capture 

depression-related cues in speech articulation in ways, which, to the 

best of our knowledge, have not been previously explored.  

In this paper, we investigate two novel sets of features based 

on speech landmarks, i.e. landmark bigrams, and topic modelling of 

landmark bigrams via Latent Dirichlet Allocation (LDA) for 

depression classification in natural realistic environments. 
 

2. RELATED WORK 
 

Speech is produced by a series of articulator narrowings and releases 

[11]. The dominant speech processing methods derive frame-level 

acoustic features such as mel frequency cepstral coefficients 

(MFCCs) at fixed frame rates (such as 100Hz), within which the 

encapsulated signal is assumed time-invariant and stationary. By 

contrast with and independent of frames, landmark methods 

characterize articulatory elements of speech, and detect timestamp 

boundaries denoting sharp changes in speech articulation [12], [13], 

[14] (as seen in Figure 1). The introduction of landmarks dates back 

to Stevens et al. in 1992 [15], where landmarks were proposed to 

segment speech for lexical representation associated with 

articulators. Later, landmarks have been used in other fields, 

primarily for speech recognition [11], [12], [14].  

While speech landmarks are relatively less common than their 

frame-based analysis counterparts, they are nonetheless increasingly 

probed. For instance, landmarks have been used to study both lexical 

content of speech [12], [13], [14] and non-lexical attributes of 

speech such as syllabic complexity [16] and voice-onset time [17]. 

Recently, landmarks have been investigated for paralinguistic 

content, e.g. children vocalization [18], emotion [19], Parkinson’s 

disease and sleep deprivation [20]. In [19], landmark features were 

found to complement conventional acoustic features for emotion 

recognition, yet only three consonantal landmarks were used.  

Compared with conventional acoustic features, landmarks offer 

a number of advantages: increased channel robustness and 

information related to the articulatory effects of depressed speakers, 

which are commonly reported to be important [8], [9], [10]. 

However, landmarks have mostly been treated as a tool to segment 

points in time about articulatory changes, while deriving more 

effective and meaningful representation from landmarks has yet to 

be investigated.  

Since landmarks are events, with a symbolic rather than 

numerical representation, they can potentially be effectively 

exploited by analysis approaches more akin to those from Natural 

Language Processing (NLP). It has been shown in literature that the 

text analysis is very effective for both depression classification and 

prediction [21], [22], [23]. Transcripts of interview questions 

together with topic-wise multimodal features yielded very 

promising results for depression prediction [21], and rich 
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information in text was found to be valuable for depression 

classification and prediction [22], [24].  
 

3. PROPOSED LANDMARK BIGRAM FEATURES 
 

3.1. What are landmarks? 

This section introduces six landmarks adopted in this study, each 

with onset (+) and offset (−) states. They are 'g(lottis)', 'p(losives)', 

's(onorant)', 'f(ricative)', 'v(oiced fricative)', and 'b(ursts)', which 

essentially specify points in time for different abrupt articulatory 

events (summarized in Table 1).  

Table 1: Description of the six landmarks investigated. 

Landmark Description 

g 
sustained vibration of vocal folds starts (+) or ends 

(−). 

p sustained periodicity begins (+) or ends (−) 

s 
opening (+) or closing (−) of the velopharyngeal port 

during a sonorant sound 

f frication onset (+) or offset (-) 

v voiced frication onset (+) or offset (-) 

b 
onset (+) or offset (-) of existence of turbulent noise 

during obstruent regions 

They are detected once certain evidence of rapid changes (i.e. 

rises or falls) in power across multiple frequency ranges and 

multiple time scales is observed. Among the landmarks, ‘s’ and ‘v’ 

relate to voiced speech, whereas ‘f’ and ‘b’ relate to unvoiced speech. 

Detailed descriptions for the landmark extraction process can be 

found in [25]. Examples of the landmarks identified from speech can 

be seen in Figure 1.  

 
Figure 1: Detected landmarks for the word “PaTaKa” uttered by 

two speakers: (a) healthy and (b) depressed, with PHQ-9 scores of 

3 and 27 respectively. Both recordings were from males using 

Samsung smartphones. The healthy speaker uttered “PaTaKa” 

faster and more frequently than the depressed speaker. 

Although landmarks are informative when used alone, it is 

suggested by [12] that landmark bigrams carry more information 

regarding the speech articulation, for instance, the bigram (-b, +b) 

represents the number of pauses in speech.  

3.2 Proposed Landmark Bigram Features 

3.2.1. Bigram-Count 

We define a set of 𝐿 landmarks, each with onset (+) and offset (-) 

states, i.e. 2L states in total:  

 𝑆 = {𝑔±, 𝑝±, 𝑠±,  𝑓±, 𝑣±, 𝑏±} (1) 

and associated with a speech file, the sequence of identified 

landmarks is {𝑙1, 𝑙2, … , 𝑙𝑛, …  𝑙𝑁+1}, where 𝑙𝑛 ∈ 𝑆 represents the nth 

landmark (n is a non-uniform time index), and N+1 is the number of 

landmarks per speech recording (different across different files). 

Landmark bigrams are defined as pairs of consecutive 

landmarks 𝑤𝑛
𝑖,𝑗

= (𝑙𝑛 = 𝑖, 𝑙𝑛+1 = 𝑗) , where 𝑖, 𝑗 ∈ 𝑆  represent a 

specific pair of landmarks. Accordingly, for the speech file 𝑑 ∈
{1, … , 𝐷}, the landmark bigrams are 

The landmark bigram count for 𝑤𝑖,𝑗 can then be defined: 

  𝑐𝑑
𝑖,𝑗

= #(𝒘𝑑
𝑖,𝑗

)  (3) 

where #(∙)  represents the counting operation per speech file d. 

Concatenating all possible bigrams gives a vector of bigram counts: 

 𝒄𝑑 = [𝑐𝑑
𝑔+,𝑔+ , … , 𝑐𝑑

𝑖,𝑗
, … , 𝑐𝑑

𝑏−,𝑏−]𝑇 ∈ ℝ4𝐿2
 (4) 

 

3.2.2. LDA-Bigram 

Latent Dirichlet Allocation (LDA) has been widely used for topic 

modelling in NLP since its introduction in 2003 [26], [27], [28]. 

LDA generates a representation of latent topics (e.g. sports, travel, 

etc.) given documents consisting of words. Motivated by this, 

landmark bigrams herein were treated as ‘words’, from which 

meaningful articulatory events may be efficiently exploited using 

LDA. Figure 2 depicts the graphic model of LDA in the context of 

depression classification using landmark bigrams. 

 

Figure 2: The graphical model for LDA. There are D speech files 

(‘documents’), N landmark bigrams (‘words’), and K latent 

articulatory events (‘topics’). 𝑤𝑑,𝑛 is the nth bigram in the dth speech 

file. The latent variables 𝑧𝑑,𝑛, 𝛽𝑘, 𝜃𝑑 are estimated from training, 

controlled by hyperparameters 𝛼 and 𝜂. 

In Figure 2, 𝛽𝑘  and 𝜃𝑑  follow a Dirichlet distribution, while 

𝑧𝑑,𝑛 and 𝑤𝑑,𝑛 follow a Multinomial distribution. 

 
𝛽𝑘~Dir(𝜂), 𝜃𝑑~Dir(𝛼) 

𝑧𝑑,𝑛~Multi(𝜃𝑑), 𝑤𝑑,𝑛~Multi(𝛽𝑍𝑑,𝑛
) 

(5) 

𝜃𝑑 = {𝜃𝑑,1, … , 𝜃𝑑,𝑘 , … , 𝜃𝑑,𝐾}, ∑ 𝜃𝑑,𝑖
𝐾
𝑖=1 = 1  characterizes the 

probability distribution over K articulation events for the file 𝑑 ∈

{1, … , 𝐷} , while 𝛽𝑘 = {𝛽𝑘,1, … , 𝛽𝑘,𝑛, … , 𝛽𝑘,𝑁}, ∑ 𝛽𝑘,𝑛
𝑁
𝑛=1 = 1 

characterizes the probability distribution over N bigrams for the 

articulation event 𝑘 ∈ {1, … , 𝐾} . For 𝑤𝑑,𝑛 , an articulation event 

𝑧𝑑,𝑛 = 𝑘 is sampled from 𝜃𝑑  to yield 𝛽𝑧𝑑,𝑛=𝑘 , which specifies the 

probability of generating 𝑤𝑑,𝑛 . Overall, 𝑧𝑑,𝑛 , 𝛽𝑘 , and 𝜃𝑑  together 

describe relationships for bigram-articulation-speech, which is 

similar to word-topic-document in topic modelling.  

The objective of LDA is to learn probabilities for latent events 

𝜃𝑑∗  from the observed bigrams 𝒘𝑑∗  in a new document 𝑑∗ . The 

training of LDA involves optimization of the posterior distribution 

 𝒘𝑑 = {𝑤𝑑,1, … , 𝑤𝑑,𝑛, … , 𝑤𝑑,𝑁} (2) 

(a) 

(b) 

𝑤𝑑,𝑛 𝑧𝑑,𝑛 𝜃𝑑 𝛼 

𝛽𝑘 

𝑁 
𝐷 

𝐾 
𝜂 
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of latent variables given observations,  𝑝(𝜷, 𝜽, 𝒛|𝒘, 𝛼, 𝜂), which is 

however intractable. Thus, the optimization is done by Variational 

Bayesian Inference, i.e. approximating 𝑝(𝜷, 𝜽, 𝒛|𝒘, 𝛼, 𝜂)  using a 

simpler distribution 𝑞(𝜷, 𝜽, 𝒛), so that the Kullback-Leibler (KL) 

divergence between the two distributions is minimized. 𝑞(𝜷, 𝜽, 𝒛) 

can be fully factorized as below: 

 
𝑞(𝑧𝑑,𝑛 = 𝑘)~Multi(𝜙𝑑,𝑛

𝑘 ) 

𝑞(𝛽𝑘)~Dir(𝜆𝑘), 𝑞(𝜃𝑑)~Dir(𝛾𝑑) 
(6) 

As all distributions in (6) are exponential family distributions, 

they have analytical solutions for guaranteed convergence of KL 

divergence [26], [29]: 

 

𝜙𝑑,𝑛
𝑘 ∝ 𝔼𝑞(𝜃𝑑)[log 𝜃𝑑,𝑘] + 𝔼𝑞(𝛽𝑘)[log 𝛽𝑘,𝑤𝑑,𝑛

] 

𝛾𝑑,𝑘 = 𝛼 + ∑ 𝑐𝑑,𝑤𝑤 𝜙𝑑,𝑛
𝑘    

 𝜆𝑘,𝑤 = 𝜂 + ∑ 𝑐𝑑,𝑤𝑑 𝜙𝑑,𝑛
𝑘   

(7) 

𝑐𝑑,𝑤 is the bigram counts, i.e. the number of times bigram w appears 

in document d, as in (4). The parameters 𝜙𝑑,𝑛
𝑘 , 𝜆𝑘 , and 𝛾𝑑  are 

iteratively updated until convergence. However, it is worth noting 

that this optimization solution is non-convex, meaning that there 

exist multiple local maxima depending upon initialization of the 

latent variables. 

After having the trained parameters, i.e. 𝜙𝑑,𝑛
𝑘 , 𝜆𝑘, and 𝛾𝑑, the 

latent structure for speech articulation given bigrams is 

characterized. Given a new audio file 𝑑∗ , which has landmark 

bigram counts 𝑐𝑑∗,𝑤, the resultant LDA-bigram features are 𝜃𝑑∗: 

 
𝛾𝑑∗,𝑘 = 𝛼 + ∑ 𝑐𝑑∗,𝑤𝑤 𝜙𝑛

𝑘  

𝜃𝑑∗~Dirichlet(𝛾𝑑∗,1, … , 𝛾𝑑∗,𝐾)   
(8) 

where 𝜃𝑑∗ = {𝜃𝑑∗,1, … , 𝜃𝑑∗,𝐾} and ∑ 𝜃𝑑∗,𝑘
𝐾
𝑘=1 = 1. 

Accordingly, the proposed landmark bigram counts 𝒄𝑑∗ and the 

LDA representation of bigrams 𝜽𝑑∗  (referred to as LDA-bigram) 

were used as features for depression detection. 
 

4. EVALUATION 
 

4.1. Experimental Settings 

As per [5], the experiments were conducted on the SH2 corpus, 

containing 16 hours of speech data. This corpus is a collection of 

audio recordings (durations from 4-30s) in naturalistic 

environments, and self-reported Patient Health Questionnaire 

(PHQ-9) scores gathered through an interactive Android™ 

smartphone app. It contains 5863 audio files for 887 speakers (437 

females and 450 males), each of whom completed up to six 

elicitation tasks, i.e. sustained vowel (‘Ut’), diadochokinetic (‘Wo’), 

free speech (FS), rainbow passage (‘Pa’), cognitive load (‘CL’) and 

sentence (‘Se’). The SH2 corpus has the same training and testing 

partition as [5]: 4584 files (695 speakers) for training and 1279 files 

(192 speakers) for testing. As a result of applying a PHQ-9 threshold 

of 10 to separate healthy (PHQ-9<10) and depressed (PHQ-9≥10) 

speakers (suggested by [30]), 122 and 35 depressed speakers were 

respectively found in the training and test data partitions.  

The landmarks were extracted using the SpeechMark® toolbox 

[16], a publicly available, representative landmark extraction 

software. Note that bigrams that did not occur within the training 

data were removed from the bigram list, leading to actual feature 

dimensions much smaller than the full bigram list. For LDA, the 

number of latent articulation events K is an important parameter, 

optimized from 2 to 40 unless specified. 

For comparison with acoustic features in [5], all experiments in 

this study adopted a linear Support Vector Machine (SVM) [31] 

classifier, which was fine-tuned through parameter sweeps of C 

from 10-5 to 10 in a log space in a 3-fold cross validation scheme 

within the training data, and the best parameter was adopted for 

testing on the test data. During training, C was weighted inversely 

proportional to class frequencies to handle imbalanced training data 

for the healthy and depressed classes, as per [5]. Since each speaker 

conducted up to six elicitation tasks, task-based decisions were 

fused per speaker via majority voting, except for Section 4.3 (where 

depression detection was investigated per task). F1 score (for 

depressed speakers), accuracy, and Unweighted Averaged Recall 

(UAR) were used for evaluating performance for speakers. 

Parameter C was optimized for F1 on the training data.  
 

4.2. Landmark Bigram Features 

The first question addressed was which landmarks are effective for 

differentiating depressed and healthy speakers. Further, experiments 

were carried out to study the importance of normalization specific 

to task and gender, which have shown great benefits for depression 

detection [5]. Gender or task normalization was proposed in [5] to 

normalize training and test data specific to a certain gender or task 

with coefficients learnt from the training data. Figure 3 compares 

the proposed bigram-count and LDA-bigram features with/out 

task/gender normalization. Moreover, landmarks were appended 

one-by-one to find an optimal set of landmarks to derive bigram-

count, starting from “s” to all six landmarks “s,v,p,f,g,b”. The same 

set of landmarks were then used for LDA-bigram to examine the 

benefit of LDA representation.  

 
Figure 3: F1 (depression) scores (chance level=0.267) for (a) 

bigram-count and (b) LDA-bigram. Within the brackets are the 

feature dimensions.  

In Figure 3, the ‘s’ (sonorant) appeared important and achieved 

0.35 and 0.4 in F1 scores for bigram-count and LDA-bigram. Also, 

it was beneficial to apply task/gender normalization in most cases 

for bigram-count (achieving 0.433 and 0.412 within each case), 

while gender normalization showed more importance than task 

normalization for LDA-bigram. The benefit of including gender 

normalization was not surprising, as this is in line with the gender 

dependency of landmarks for Parkinson’s disease reported in [20]. 

Results also suggest that larger numbers of landmarks improved 

learning of the LDA representation, which achieved 0.431. 

The fact that task normalization was helpful for bigram-count 

was also expected, since there are certain unique sets of landmark 

bigrams involved when people conduct different elicitation tasks. 

For instance, a reading task consistently produce roughly the same 

number of the same landmarks, whereas landmark occurrence 

during free speech will depend on word choice. Utterances of 

‘PATAKA’ produce landmarks depending on how quickly people 

say it in a fixed specified time window (as in Figure 1).  

(a) 

(b) 
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The observation above, on the other hand, suggests that it is 

sub-optimal to rely on the same set of landmark bigrams for all 

elicitation tasks, and benefits can be obtained from tailoring bigrams 

for each task. The latter point motivated the search for optimum 

bigrams for each task in the following experiments. 
 

4.3. Landmark Bigrams Optimized for Elicitation Tasks 

In this section, choices of landmarks were tailored for each 

elicitation task to consider the uniqueness of landmark bigrams for 

each task, as well as to better understand the underlying articulatory 

aspects for each task via the best-performing landmark bigrams. For 

bigram-count, gender normalization was applied, except for the 

‘CL’ task. For LDA-bigram, gender normalization was only applied 

to the ‘Pa’ and ‘Ut’ tasks. z-normalization was applied to normalize 

training and testing data in all systems. 

There are three sets of experiments in Figure 4: set 1 looked for 

the best landmarks for bigram-count; set 2 used the same set of 

landmarks for LDA-bigram, as per Figure 3; In set 3, the event 

number K was empirically set to 4 (i.e. the resultant features have 4 

dimensions), and the landmarks were tailored for LDA-bigram. The 

motivation for set 3 was that there might exist a different set of 

landmarks that are associated more closely with latent articulation 

events than using those optimized from bigram-count. 

 
 CL FS Pa Se Ut Wo 

#D/#H 24/108 23/105 32/140 19/89 34/150 30/137 

set 1 g,p,s,f (27) f,v,b (16) g,s,b (18) s,f,b (18) s,f,v,b (31) g,s,v,b (27) 

set 2 g,p,s,f (6) f,v,b (36) g,s,b (36) s,f,b (14) s,f,v,b (10) g,s,v,b (30) 

set 3 s,f (4) g,p,f (4) f,s,v (4) g,p,b,v (4) s,f,b (4) p,f,v (4) 

Figure 4: F1 (depression) score (chance-level=0.267) for bigram-

count and LDA-bigram within each elicitation task, which has 

various most effective landmarks. The table summarizes the number 

of depressed and healthy speakers (i.e. #D and #H) per task, selected 

landmarks, and feature dimensions for each set of experiments. 

LDA-bigram performed the best for “Wo”, “Se” and “Pa” tasks 

with merely 4 features extracted from the tailored landmarks, 

achieving 0.475, 0.459 and 0.408 in F1 score respectively. Also, it 

was beneficial to tailor landmark choices for each task, which gave 

improvements for across three sets of experiments. It is also worth 

mentioning that within each task, mostly 3-4 landmarks were 

effective in characterizing the unique speech articulation for 

depression classification.  
 

4.4. Fusion of Proposed Landmark Features 

Choices for landmark bigrams per task were found important for 

both bigram-count and LDA-bigram, and it is expected that better 

performances can be obtained via fusion of the task-optimized 

systems. This section accomplishes this using majority voting across 

all task-based decisions for each speaker.  

As shown in Table 2, fusion of the optimized landmarks per 

task gave significant improvements over those using landmarks 

optimized over all tasks, 0.506 vs 0.433 for bigram-count, and 0.549 

vs 0.431 for LDA-bigram, in F1 scores. Compared with acoustic 

features used in [5], the use of LDA-bigram yielded significantly 

better performances, confirming the effectiveness of landmark 

bigrams as well as the LDA technique for classifying depression. 

Table 2: Fusion of task decisions using Majority Voting. The 2nd 

and 3rd rows fused all tasks which adopted the same landmark 

bigrams, whereas the 4th and 5th rows fused task-optimized landmark 

bigrams. The three best performing tasks were fused for LDA-

bigram* (i.e. “Wo”, “Se”, and “Pa”), and five tasks were fused for 

bigram-count* (i.e. excluding only “Ut”). 

 F1 Accuracy UAR Confusion Matrix 

Acoustic  

features [5] 
0.422 72.9% 0.657 [

121 36
16 19

] 

Bigram-count# 0.433 71.4% 0.669 [
116 41
14 21

] 

LDA-bigram# 0.431 65.6% 0.679 [
101 56
10 25

] 

Bigram-count* 0.506 78.7% 0.714 [
130 27
14 21

] 

LDA-bigram* 0.549 78.7% 0.758 [
126 31
10 25

] 

“#” means the same landmarks for all tasks (Figure 3), whereas 

“*” means different optimized landmarks for each task (Figure 4).  

It is worth noting that the acoustic features in [5] require careful 

selection of voice activity detectors to remove background 

environment noise, whereas the landmark detectors operate directly 

on the raw speech signal to pick up certain articulatory events that 

are robust to the noise.  
 

5. CONCLUSION 
 

This research has presented two novel sets of features based on 

speech landmark bigrams for depression detection under naturalistic 

environment, i.e. bigram-count, which counts the occurrences of 

landmark bigrams, and LDA-bigram, which effectively discovers 

latent articulation patterns from landmark bigrams. The proposed 

features are appealing, since they capture information from speech 

articulation, possibly exhibit increased robustness to channel 

variability and environment noise, have reduced feature 

dimensionality, and improved performance. In particular, the most 

effective sets of landmarks and investigations of task-specific 

settings were presented, yielding significant improvements over 

systems without consideration of the landmark selection and task-

specific information. 

Apart from the improved performance, this research is 

significant in a number of ways: 1) the first study to our knowledge 

to apply landmark bigrams for depression detection, showing great 

promise; 2) yielding further improved results over those on datasets 

which have clean recordings, a single recording environment and 

long utterances [32]; 3) results were evaluated on a larger number of 

speakers compared with previous studies; 4) there is no gap between 

PHQ-9 in separating the depressed and healthy speakers. 

Future work involves in-depth analysis and interpretability of 

articulatory disfunction for depressed speakers using the proposed 

features. The proposed features will be tested on new depression 

datasets to validate their effectiveness and generalization. 

Investigations into word representation as well as classification 

methods from NLP may improve detection performance further. 
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