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1INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal;
2CENC Sleep Medicine Center, Lisbon, Portugal

ABSTRACT

Obstructive sleep apnea (OSA) is a prevalent sleep disorder, re-
sponsible for a decrease of people’s quality of life, and significant
morbidity and mortality associated with hypertension and cardio-
vascular diseases. OSA is caused by anatomical and functional al-
terations in the upper airways, thus we hypothesize that the speech
properties of OSA patients are altered, making it possible to detect
OSA through voice analysis. To address this hypothesis, we col-
lected speech recordings from 25 OSA subjects and 20 controls, de-
signed a feature set, and compared different machine learning algo-
rithms for binary classification. We achieved a True-Positive-Rate of
88% and a True-Negative-Rate of 80% with a majority vote ensem-
ble of SVM, LDA and kNN classifiers. These results were validated
with in-the-wild data acquired from Youtube. Moreover, the negative
impact of sleep disorders on working memory was also shown by the
results obtained in one of the recorded verbal tasks.

Index Terms— Obstructive Sleep Apnea, Speech, Machine
Learning, Cognitive Load

1. INTRODUCTION

Obstructive sleep apnea (OSA) is a sleep-concerned breathing dis-
order characterized by a complete stop or decrease of the airflow,
despite the continued or increased inspiratory efforts [1]. Patients
with OSA report decreases in their quality of life, mood and per-
sonality changes, relationship discord associated with loud snoring
[2], depression, cognitive impairment, and excessive daytime sleepi-
ness [3]. OSA is also associated with diabetes [3], and significant
morbidity and mortality associated mainly with hypertension and
cardiovascular diseases [1, 4]. According to Senaratna et al. [5],
the prevalence of OSA (more than 5 respiratory events/hour) ranges
from 9% to 38%, with higher values in men and elderly groups.

The gold standard diagnosis of OSA is based on a polysomnog-
raphy (PSG), an exam that requires that the patients spend a night
connected to several electrodes, which not only is not the best indi-
cator of the patient’s sleeping habits [2], but also it is time consuming
and uncomfortable for the patient [6]. Thus, cost-effective, quicker
and more comfortable alternatives for OSA diagnosis are necessary.

Many efforts have been made to find alternative approaches to
diagnose and monitor OSA. Some are based on the idea that OSA pa-
tients have altered craniofacial structures, thus aiming to detect OSA
from facial photographies [7, 8]; some rely on wearable devices for
home monitoring of snoring [9, 10] or for measuring biosignals, such
as air flow through temperature fluctuations [11], nasal air-pressure
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[11], actigraphy [11, 12], peripheral arterial pulsation, and arterial
oxygen saturation [12]. In general, these alternative diagnosis and
monitoring technologies present limitations, requiring for instance
overnight recordings, or obtrusive data capture. On the other hand,
speech is known to carry information about the speaker’s gender,
age, emotions, personality traits and health. Moreover, it is present
in daily life, its acquisition can be unobtrusive, it provides quantita-
tive data relatively quickly, it does not require expensive recording
tools, and it is free from sensor calibration [4]. Hence, speech ap-
pears as a potentially valuable biomarker for sleep disorders.

The use of speech as a biomarker for OSA has been previously
explored in the literature based either on sustained vowel produc-
tions [13], on read speech [4, 14, 15, 16, 6, 17, 18], and on yes/no
questions and lists of words [14, 15, 16].

In this work, we addressed OSA automatic detection, through
the analysis of read and spontaneous speech in Portuguese, as well as
in-the-wild data acquired form video blogs (vlogs). The remaining
of this document is organized as follows. Section 2 describes how
OSA pathophysiology may influence speech properties, and sum-
marizes previous works that address OSA detection through speech
analysis. Section 3 characterizes our corpora, the Portuguese Sleep
Disorders (PSD) Corpus and the in-the-wild OSA (WOSA) corpus,
as well as the design of the recording protocol. Section 4 describes
feature extraction. Next, in section 5, we present our experiments
and the obtained results. In section 6, we investigate the relation-
ship between cognitive load and sleep disorders. Finally, section 7
presents conclusions and directions for future work.

2. OSA’S IMPACT ON SPEECH AND RELATED WORK

OSA pathophysiology can be explained by anatomical alterations in
the upper respiratory tract, such as: retrognathia and high arched
palate [2], elongated or excessive tissue of the soft palate, large
tongue, swollen uvula, large tonsils and redundant pharyngeal mu-
cosa [1]; excessive compliance of the pharyngeal wall; and decrease
in upper airway dilator muscle tone [19], which may compromise its
normal function of maintaining the pharyngeal lumen open during
inspiration, contributing to the collapse of the upper airways. These
alterations, which are responsible for snoring and airway narrow-
ing, also cause modifications in the acoustic properties of voice [20].
Moreover, the recurrent laryngeal nerve, which is responsible for the
enervation of dilator muscles of the upper airway, is also responsible
for enervating the cricoarytenoid muscles, responsible for opening
the vocal folds. The main speech-related anomalies are [20]:

Articulatory anomalies, caused by hypotonus or lack of regu-
lated innervations to the breathing musculature, being responsible
for neuromotor dysfunction [20]. This is associated with articula-
tory disorders, especially dysarthria, which affects the articulation
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of vowels and consonants, and causes slurred speech [4].
Phonation anomalies, consequence of a larynx inflammation

caused by snoring, typical in OSA patients [4], which could affect
the vocal folds.

Resonance anomalies, explained by an abnormal coupling of
the vocal tract with the nasal cavity - Pozo et al [4], suggesting
that OSA speech exhibits smaller differences between nasal and non
nasal vowels than healthy speech.

Given these anomalies, several authors have addressed the au-
tomatic detection of OSA through voice analysis, using corpora in
Spanish [4, 17, 13, 18] and Hebrew [14, 15, 16, 6]. The most com-
mon acoustic features in these works are Mel frequency cepstral co-
efficients (MFCC), linear prediction cepstral coefficients (LPCC),
Energy, Harmonics-to-noise ratio (HNR), jitter, and formants fre-
quency and bandwidth. The most common classifying and regres-
sion methods are Gaussian Mixture Models (GMM) [4, 14, 15],
Linear Discriminant Analysis (LDA) [16, 17], k-Nearest Neighbors
(kNN) [16, 13], Support Vector Machines (SVM) [13], Bayesian
Classifiers [13], Neural networks ([13]), Adaboost [13], and Support
Vector Regression (SVR) [6, 18].

Espinoza-Cuadros et al. [18] collected the largest corpus, having
obtained worse results than the other works reviewed in both regres-
sion and classification tasks. This motivated them to make a careful
review of previous works and on possible pitfalls that could be re-
sponsible for overoptimistic results. The authors pointed out three
main pitfalls: small corpora and very often unbalanced in terms of
classes, which is more prone to overfitting; presence of confounding
variables such as gender, age and body mass index unevenly dis-
tributed between classes; and feature selection on high dimension-
ality feature spaces when little data is available, which is also most
likely to cause data overfitting.

Goldshtein et al. [14] is the only work so far that made a sep-
arate analysis for female and male speakers, reporting better results
for female speakers. Elisha et al [15] observed that the phonemes
carrying more distinguishing information were the vowel /a/ and the
nasal phonemes (/m/ and /n/), which is consistent with the resonance
anomalies previously described.

The works of Kriboy et al. [16] and Solé-Casals et al. [13] hy-
pothesized that acoustic properties of speech that are altered by body
position help distinguish between OSA and Non-OSA subjects. In
fact, there is an increased frequency and severity of apneas in supine
position, most likely due to unfavorable airway geometry, increase in
collapsibility, gravity and inadequate dilator muscle compensation.

3. CORPORA

This section describes the two corpora collected for this study: the
Portuguese Sleep Disorders (PSD) Corpus and the in-the-wild OSA
(WOSA) corpus.

3.1. Portuguese Sleep Disorders (PSD) Corpus

This corpus includes speech recordings of people suffering from
sleep disorders (OSA and insomnia), and of volunteers self-diagnosed
as not suffering from sleep disorders. The collection of speech from
patients took place at Centro de Encefalografia e Neurofisiologia
Clı́nica (CENC), during their first medical appointment. Patients
were later diagnosed with OSA (22), insomnia (29) or both (3). The
collection of speech from 20 volunteers took place at CENC and

at INESC-ID. All patients under 18 years old, suffering from psy-
chiatric comorbidities, already under treatment, or unable to speak
Portuguese were excluded from our study. The Ethics Committee of
Instituto Superior Técnico approved the experimental protocol.

The recordings included four tasks: 1) reading the Portuguese
version of the tale ”The North Wind and the Sun”, a phonetically
rich text; 2) pronouncing elongated vowels /a/ and /i/; 3) a reading
span task; and 4) free description of Vincent Van Gogh’s painting
”Bedroom in Arles”.

Although elongated vowels are expected to reveal phonation
anomalies and some degree of muscle fatigue, their analysis was
excluded, since their acoustic features differ significantly from the
features extracted for the remaining data tasks, and the number of
recorded vowels was too small to allow for a separate analysis. The
classification of insomnia patients was not addressed either.

The reading span task (task 3), based on [21], required partici-
pants to read out loud 10 possibly illogical sentences, and to classify
them as logical or illogical. At the same time, letters were being dis-
played in between the sentences, that the subjects had to memorize
and later identify. This task was designed to enable the assessment
of working memory, with the number of correctly recalled letters, in
the correct order (score) [22]. This exercise was chosen to allow for
a cross study between sleep disorders, interpreted here as signs of
fatigue, and cognitive load assessment through speech analysis.

The average duration of the audio files is 33.8s for the paragraph,
3.5s, for each of the sustained vowels, 4.3s for each of the 10 sen-
tences in task 3, and 52.1s for the image description. The average
Apnea-Hypopnea Index [2] of OSA patients is 32.0 and the standard
deviation is 20.7.

As shown in Table 1 (a), the corpus is highly imbalanced in terms
of age and gender, reflecting the prevalence of the disease [5]. This
was the motivation for recording 3 extra female speakers with OSA,
and 3 extra control male speakers, and selecting a subset of the orig-
inal corpus, to build a new corpus, PSD-b, as balanced as possible,
that is described in Table 1 (b).

To the best of our knowledge, PSD is the first speech corpus for
sleep disorders fully spoken is Portuguese, although 3 of the speak-
ers were Brazilian, 2 were Spanish and 1 was Angolan. These 6
speakers were excluded from PSD-b. The inclusion of spontaneous
speech and the relationship of one of the tasks with cognitive load
assessment make PSD a unique corpus.

Table 1: Corpus characterization. #F and #M refer to the number of
female and male speakers, respectively.

(a) PSD

Control OSA
# F 12 6
#M 8 19

Age - F 33 ±11 55 ±9
Age - M 36 ±10 53 ±10

(b) PSD-b

Control OSA
#F 11 9
#M 11 11

Age - F 50 ±8 61 ±14
Age -M 43 ±15 55 ±4

3.2. In-the-wild OSA (WOSA) Corpus

Following the idea presented by Correia et al. in [23], we created a
second corpus obtained from vlogs available at youtube.com. This
pilot corpus currently includes recordings from 16 English speaking
subjects, 8 OSA and 8 controls. In each class, half of the subjets were
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male and half female. From each vlog, 12 segments with average
duration of 7.2 s were extracted. This duration was considered to be
comparable to the average duration of the PSD corpus files (10.7 s).

From the 8 OSA subjects, 6 were under treatment of continu-
ous positive airway pressure during sleep, 1 used an oral appliance
and 1 was not under treatment. The control subjects were randomly
selected from vlogs featuring unrelated topics.

Each vlog included (or not) a self claim of suffering from OSA.
In spite of the noisy labels, this small set was intended, on one hand,
to enable the validation of the results obtained with the laboratory
corpus, and on the other hand to serve as a proof-of-concept on using
in-the-wild data to diagnose OSA, and to classify OSA speech in
subjects undertaking treatment.

4. FEATURE EXTRACTION

4.1. Knowledge-based feature characterization

Based on the literature review and on the expected anomalies de-
scribed in Section 2, we represent each audio file as a vector of 109
features.

This feature set includes 25 features common to eGeMAPS [24]:
mean and standard deviation (std) of the frequency and bandwidth
of formant 1, 2 and 3; mean and std of HNR; mean and std of jitter;
mean, std, and percentile 20, 50, and 100 of F0; and mean and std
of all frames and of only voiced frames of Spectral Flux (difference
of the spectra of two consecutive frames). The set also includes the
mean of the 12 MFCC plus their first and second order derivatives
(∆ and ∆∆MFCC), and 48 LPCC. The mean of the first 4 MFCC
were also common to eGeMAPS.

The formant frequencies are expected to reveal resonance
anomalies, and jitter and HNR are expected to reveal phonation
anomalies. Formant bandwidths are expected to be altered due to
the altered properties of the soft tissue (pharingeal mucosa and soft
tissue). The spectral flux and F0-related features were included in
this feature set because they proved to be relevant for sleepiness
detection [25]. LPCC and MFCC were chosen because of their
relationship with the vocal tract shape.

4.2. Automatic feature selection

From the original feature set, henceforth abbreviated as OFS, we
derived two other subsets, in an effort to avoid high dimensionality
problems, given the reduced size of the corpus:

• Random Forest feature selection (RF): 5 most relevant fea-
tures according to the RF ranking: mean of ∆∆MFCC[12],
mean of ∆MFCC[1], and mean, percentile 20.0 and percentile
50.0 of F0. This technique returns a ranking based on the de-
crease of entropy caused by each feature. It was used because
it is considered resistant to overfitting [26], but it is clearly
selecting gender related features.

• Mann-Whitney U test ranking (M-W): 18 features with
lower p-value according to the Mann-Whitney U test.

The number of features integrating each feature subset was de-
fined by the number of features that enabled the best classification
results, in the PSD corpus, using SVM with linear kernel. Hence,
they may lead to overoptimistic results in that data set.

The feature values were normalized between 0 and 1.

5. EXPERIMENTAL RESULTS

This section reports on OSA binary classification experiments per-
formed on: a) the PSD corpus, b) the more balanced PSD-b corpus;
c) the WOSA corpus, and d) a combination of PSD+WOSA corpora.

Table 2 summarizes the main results achieved. The table reports
results at speaker level, in which each segment prediction is com-
bined using a majority vote strategy. The full set of experiments
involved the comparison of five classifiers: SVM, kNN, LDA, Naı̈ve
Bayes and Random Forest. All classifiers were tested using three
feature sets (OFS, RF and M-W), with leave-one-speaker-out cross
validation. We also tested the combination of different classifiers,
using both majority vote, and a weighted approach (quadratic best-
worst weighted vote [27]). For the sake of conciseness, we only
report results for the three best combinations of feature sets and clas-
sifiers according to the results obtained for PSD (first row of Table
2). The second and third rows show the results obtained for the PSD-
b corpus, and the WOSA corpus, respectively. The last row shows
results of training with a combination of PSD+WOSA, but testing
only on speakers that belong to the WOSA corpus.

The best performing single classifier using the PSD corpus was
SVM, both with the original and the RF feature sets. However, the
combination by majority vote of SVM, kNN and LDA with the orig-
inal feature set allowed an improvement of TNR to 80%.

The RF feature set yielded the largest TPR in the PSD corpus
(92%), but the correspondent TNR is rather low (65%). In fact,
the RF feature set does not achieve satisfactory results in either the
WOSA, or the PSD+WOSA corpora. These observations suggest
that the RF feature set was overfitting the PSD data.

On the other hand, OFS is able to characterize well other data
sets, especially with the combination of SVM, LDA and kNN. The
worse results obtained for the PSD-b corpus reflect the fact that the
models in PSD may learn features associated with gender and age.

Comparing the results obtained with PSD+WOSA with the
WOSA and PSD alone, we observe that the combination of the two
data sets produces worse results, especially in terms of TNR. This
may be due to the fact that this is a cross language experiment and
involves different types of verbal tasks.

The fact that we were able to accurately detect 87.5% of the OSA
patients using the WOSA corpus suggest that the different types of
treatments undertaken by the subjects from the WOSA corpus, do
not annihilate the speech alterations typical of OSA speech.

5.1. Phoneme relevance for OSA detection

Table 3 represents a comparative analysis of the results obtained in
each of the three analyzed verbal tasks. For task 3, the analysis is
done separately for each read sentence.

Portuguese is a language that uses many diphthongs and nasal
sounds (/m/, /n/, /ñ/, /ı̃/, /ẽ/, /5̃/, /õ/, /ũ/, /j̃/ and /w̃/). The inventory
of nasal sounds is even wider in some regions of the country. In Ta-
ble 3, one can observe that the sentence for which the classification
results were better corresponds to the sentence with higher relative
frequency of nasal phonemes and diphthongs. This represents an ev-
idence for the presence of resonance anomalies related to the abnor-
mal coupling of the vocal tract with the nasal cavity in OSA subjects,
and for the presence of phonation anomalies, related to a possible in-
flammation of the larynx, caused by snoring. These findings are also
consistent with [15], which reports that nasal phonemes carry more
distinguishing information for OSA detection.

5853



Table 2: Results achieved with the three best models: RF features and SVM classifier; OFS features and SVM classifier; and OFS features
and the majority vote fusion of SVM, LDA and kNN, for the four data sets studied. TPR stands for True Positive Rate, TNR for True Negative
Rate and WA for Weighted Accuracy.

RF features; SVM OFS features; SVM OFS features; SVM+LDA+kNN
TPR
(%)

TNR
(%)

WA
(%)

TPR
(%)

TNR
(%)

WA
(%)

TPR
(%)

TNR
(%)

WA
(%)

PSD 92.00 65.00 80.00 88.00 75.00 82.22 88.00 80.00 84.44
PSD-b 85.00 68.18 76.19 70.00 77.27 73.81 80.00 72.72 76.19
WOSA 12.20 37.50 25.00 75.00 87.50 81.25 75.00 87.50 81.25
PSD+WOSA 50.00 25.00 37.50 75.00 62.50 68.75 75.00 62.50 68.75

Table 3: Comparison of the classification results per verbal task with
the number of nasal phonemes and diphthongs.

Task
Nasal

phonemes
(%)

Diphthongs
(%)

Performance
TPR
(%)

TNR
(%)

WA
(%)

1 12.6 6.4 84.0 70.0 78.8
3.1 13.5 5.7 84.0 65.0 75.6
3.2 25.0 10.0 92.0 75.0 84.4
3.3 18.8 6.3 72.0 65.0 68.9
3.4 6.5 6.5 84.0 70.0 77.8
3.5 12.1 5.1 92.0 65.0 80.0
3.6 8.9 4.4 80.0 85.0 82.2
3.7 14.0 7.0 84.0 75.0 80.0
3.8 14.3 7.1 84.0 75.0 80.0
3.9 11.5 1.9 92.0 65.0 80.0

3.10 16.0 4.0 88.0 60.0 75.6
4 - - 92.0 55.0 75.6

We also observe that task 4 (spontaneous speech), despite
achieving a very high TRP (92%), achieves a rather low TNR
(55%), comparable to chance. This may be due to the fact that
non-speech segments were only removed in the beginning and in the
end of each file. In fact, the duration of interpausal units in this task
may also be an important cue to cognitive load analysis.

6. SLEEP DISORDERS’ IMPACT ON WORKING MEMORY

Baddeley (1992) defined working memory as a brain system that
provides temporary storage of information, as well as processing of
that information [28]. The shared resources for storage and process-
ing in the working memory involve a trade off between the complex-
ity of processing a given task and short-term memory [29]. Cognitive
load refers to the demands placed on a person’s working memory by
(a) the main task that he or she is performing, (b) any other task(s)
he or she was performing concurrently, and (c) distracting aspects of
the situation in which he or she finds himself or herself [30].

We compared the score obtained by control subjects and sleep
disordered subjects (for this analysis, we consider both insomnia
and OSA patients) in task 3 of the PSD corpus, and observed that
control subjects obtained a mean score of 7.7/10, insomnia patients
obtained 5.3/10 and OSA patients obtained 4.8/10. This suggests
that sleep disorders impair working memory, which is coherent to
the findings of previous works that use functional brain imaging to
associate sleep deprivation and impaired working memory [31][32].

We repeated the score comparison across the age ranges with

available data, in intervals of ten years, and we observed that the
mean score of control subjects is higher than that of sleep disordered
subjects, for all age ranges.

Naturally, one should be cautious when drawing conclusions, be-
cause these score differences can also be influenced by other factors,
for which we do not hold information.

7. CONCLUSIONS

This study addresses OSA detection with both read and spontaneous
speech collected in a sleep clinic, and also using in-the-wild data.

The feature set we designed for OSA detection is able to achieve
promising results, when compared to previous works, although the
corpora were very different, both in terms of language and type of
materials collected (read speech, yes/no questions, words, and sus-
tained vowels in all other works reviewed).

We found evidence for the resonance and phonation anomalies
foreseen by Fox [20] with the comparative analysis of performance
versus the relative frequency of nasal phonemes and diphthongs.

Although the results obtained are promising, the major limita-
tion is the reduced size of the corpora under study and the age and
gender imbalance, which we tried to reduce using PSD-b. The re-
sults obtained for this small corpus point to the need for recording a
much larger corpus that may enable a better OSA detection within
each gender/age class.

The results obtained with the vlog corpus were particularly in-
teresting, as they involved cross language experiments, as well as
experiments with subjects undertaking different types of treatment.
Nevertheless, one should consider the possibility of population-bias
because individuals who choose to blog about their struggle with
OSA may be among the more severely affected.

The need for manual verification of the OSA claim in the WOSA
corpus was the main factor preventing its expansion. In fact, our
initial query retrieved vlogs from subjects with central sleep apnea
as well as vlogs from subjects with obstructive sleep apnea. We plan
to address this issue in the near future using a bag-of-words model
applied to the vlog transcription [23].

Future work will also further explore the spontaneous speech
subset of the PSD corpus, in particular, the intra-speech inhalation
sounds during which the entire vocal tract is exposed to enable max-
imum intake of air. These breath sounds have been shown to carry
information about the speakers identity [33], and may also reveal
some of the anomalies caused by OSA.

We also observed an impairment of the working memory related
to the presence of sleep disorders. We hope this evidence contributes
to raise general awareness to the importance of sleep health.
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[4] R. Pozo, J. Murillo, and L. Gómez et al., “Assessment of severe
apnoea through voice analysis, automatic speech, and speaker
recognition techniques,” EURASIP Journal on Advances in
Signal Processing, vol. 2009, no. 1, pp. 982531, 2009.

[5] C. Senaratna, J. Perret, and C. Lodge et al., “Prevalence of
obstructive sleep apnea in the general population: a systematic
review,” Sleep Medicine Reviews, vol. 34, pp. 70–81, 2017.

[6] M. Kriboy, A. Tarasiuk, and Y. Zigel, “A novel method for ob-
structive sleep apnea severity estimation using speech signals,”
in ICASSP. IEEE, 2014.

[7] A. Balaei, K. Sutherland, and P. Cistulli et al., “Automatic
detection of obstructive sleep apnea using facial images,” in
ISBI. IEEE, 2017.

[8] H. Nosrati, N. Sadr, and P. de Chazal, “Apnoea-hypopnoea
index estimation using craniofacial photographic measure-
ments,” in CinC. IEEE, 2016.

[9] B. Calabrese, F. Pucci, and M. Sturniolo et al., “Automatic
detection of obstructive sleep apnea syndrome based on snore
signals.,” in MAVEBA, 2009, pp. 185–188.

[10] C.-M. Cheng, Y.-L. Hsu, and C.-M. Young et al., “Develop-
ment of a portable device for telemonitoring of snoring and ob-
structive sleep apnea syndrome symptoms,” Telemedicine and
e-Health, vol. 14, no. 1, pp. 55–68, 2008.

[11] R. Puri, A. Athanassiadis, and N. Gill et al., “Design and pre-
liminary evaluation of a wearable device for mass-screening of
sleep apnea,” in EMBC. IEEE, 2016.

[12] S. Pittman, N. Ayas, and M. MacDonald et al., “Using a wrist-
worn device based on peripheral arterial tonometry to diagnose
obstructive sleep apnea: in-laboratory and ambulatory valida-
tion,” Sleep, vol. 27, no. 5, pp. 923–933, 2004.
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