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ABSTRACT
Improving the accuracy of personalised speech recognition for
speakers with dysarthria is a challenging research field. In this
paper, we explore an approach that non-linearly modifies speech
tempo to reduce mismatch between typical and atypical speech.
Speech tempo analysis at the phonetic level is accomplished using a
forced-alignment process from traditional GMM-HMM in automatic
speech recognition (ASR). Estimated tempo adjustments are applied
directly to the acoustic features rather than to the time-domain sig-
nals. Two approaches are considered: i) adjusting dysarthric speech
towards typical speech for input into ASR systems trained with
typical speech, and ii) adjusting typical speech towards dysarthric
speech for data augmentation in personalised dysarthric ASR train-
ing. Experimental results show that the latter strategy with data
augmentation is more effective, resulting in a nearly 7% absolute
improvement in comparison to baseline speaker-dependent trained
system evaluated using UASpeech corpus. Consistent recogni-
tion performance improvements are observed across speakers, with
greatest benefit in cases of moderate and severe dysarthria.

Index Terms— Dysarthria, Speech tempo, Phonetics, Data aug-
mentation, Personalised speech recognition

1. INTRODUCTION

Dysarthria is a speech impairment caused by damage to the parts
of the central or peripheral nervous system that control the muscles
involved in speech production, i.e., respiration, phonation, and artic-
ulation. Consequences for speech include increased respiration fre-
quency, inadequate pauses, breathy or hoarse voice, reduced speech
rate, deviations in pitch and volume, hyper- or hyponasality, and
misarticulated sounds [1], all of which can disrupt speech commu-
nication. At the same time, since dysarthria is often associated with
severe physical disabilities like cerebral palsy, for this group of peo-
ple, speech-enabled and hands-free interfaces often provide a more
attractive and efficient means of access in comparison to hardwired
switches, keyboards and remote controls [2, 3, 4, 5, 6].

Recent advances in the robustness of automatic speech recogni-
tion (ASR) technology mean that speech can now be practically used
as a machine interface in everyday environments [7]. However, the
state-of-the-art is tailored towards people with typical speech pro-
nunciation. For people with dysarthric (i.e., disordered) speech,
satisfactory recognition performance is seldom achievable due to
the high inter- and intra-speaker variability inherent in dysarthric
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speech [8, 9]. In addition, and more crucially, the difficulty in col-
lecting dysarthric speech data [10], means that the resources needed
to train models that match an individual’s voice characteristics are
not available.

Research has been conducted recently for improving ASR per-
formance by better modelling of the dysarthric speech variability.
For instance, articulatory information has been applied to support
acoustic features for improving acoustic modelling of dysarthric
speech, provided that the use of speech production knowledge can
be beneficial for the capture of inter-speaker variability [11, 12]. It
has been demonstrated that adaptation in traditional GMM-HMM is
effective to model intra-speaker variability of dysarthric speech at
individual severity levels: A combination system consisting of state-
transition interpolation and maximum a-posteriori (MAP) adaptation
was introduced in [13], and a comparative study of the fundamental
training and adaptation techniques was carried out in [9]; speaker
adaptive training (SAT) with maximum likelihood linear regression
concatenation with a MAP adaptation was reported to give the best
performance in [14]. Additionally, an automatic method for adapting
the pronunciation lexicon was introduced in [15, 16]. The use of the
current advanced deep neural networks (DNNs) in robust acoustic
modelling was exploited in [17, 18]. Further, unsupervised learning
has been applied to ASR which has the advantage that neither the
transcription of the training data nor a linguistic pronunciation lexi-
con is required. To this end, HMM-based self-organizing units and
acoustic unit descriptors, that are phone-like units, were proposed
in [19] and [20] to achieve the unsupervised training of (severe)
dysarthric speech recognisers.

Other work has focused on dysarthric speech data collection.
However, in contrast to typical speech, dysarthric speech is far more
difficult to collect: dysarthric speakers are sparse in the general
population and they are often not able to speak for a long time.
The current American English datasets – including Whitaker [21],
Nemours [22], TORGO [23] and UASpeech [24] – are all small
compared to the datasets for typical speech used to train modern
state-of-the-art ASR systems.

In this work we explore an approach that allows typical speech
to be used in the development of dysarthric ASR, by applying speech
tempo transformations to reduce typical vs. dysarthric speech mis-
match. As suggested in [25], speech tempo is an important char-
acterization of dysarthric speech which affects ASR performance.
Dysarthric speech tempo is analysed at the phonetic level using
a forced-alignment process from traditional GMM-HMM mod-
els trained incorporating a phonetic lexicon. This phoneme-based
speech tempo ratio between typical and individual dysarthric speech
is then used in tempo adjustment for two potential applications for
robust personalised dysarthric speech recognition: i) the speech
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tempo of dysarthric speech can be adjusted to better match that ob-
served in typical speech, thereby making the speech better matched
to that modelled by acoustic models trained only on typical speech;
ii) the speech tempo of typical speech can be adjusted towards
that observed for dysarthric speech and the altered typical speech
data can be applied during training in a data augmentation setup
to train personalised/speaker-dependent acoustic models (empha-
sized by [26] to deal with severe dysarthria). This is in contrast
to [27] where data augmentation was based on speed and tempo
perturbation in the signal domain using an empirical selection of the
perturbation ratio at a speaker-independent level.

In the remainder of this paper, we first describe the phonetic
analysis based on ASR forced-alignment with UASpeech training
data in Section 2 with a defined phoneme-based speech tempo ra-
tio between typical and dysarthric speech. This ratio will be ap-
plied to speech tempo adjustment of dysarthric test speech or of typ-
ical speech to augment existing dysarthric training data for robust
dysarthric speech recognition in Section 3. Experimental results will
be presented in Section 4 before Section 5 concludes the paper.

2. PHONETIC ANALYSIS

Phonetic knowledge is required in traditional ASR systems to link
the acoustic representation and the word sequence output. To
this end, the speech region corresponding to a specific phoneme
is aligned by a forced-alignment process using the GMM-HMM
model. The individual speech tempo property, at the phonetic level,
can then be analysed in an automatic manner using a speaker-
dependent (SD) trained ASR model that provides the detailed
phoneme-alignment information.

2.1. Data

The UASpeech corpus [24] is employed for speech tempo analysis
of both typical and dysarthric speakers. It consists of data from
15 dysarthric speakers with cerebral palsy and 13 control (typical)
speakers. There are 3 blocks of words for each speaker, and each
block consists of 10 digits, 26 international radio alphabets, 19 com-
puter commands, 100 common words and 100 distinct uncommon
words, which were not repeated across blocks. The speech data is
at sampling rate of 16 kHz, and all 7 microphones’ recordings are
included. Following previously published work using UASpeech
for ASR (e.g., [13, 9]), CTL (typical/control) and DYS (disor-
dered/dysarthric) datasets are divided into training and test data with
a 2 : 1 split, using blocks 1 and 3 for training and block 2 for test.

Note that the original recordings of UASpeech always contain
very long initial and trailing segments of silence in each utterance,
as well as some un-recognisable words that do not match the tran-
scripts [14, 12]. In order to clean up the redundant data portion for
more meaningful ASR experiments, we re-segmented all UASpeech
data using the trained SD GMM-HMM model of each CTL and DYS

Sets(#Spk) Re-segment Block 1 & 3 Block 2 WER

CTL 7 46410 (22.7 h) 23205 (11.1 h) 57.42
#13 3 46403 (19.8 h) 23205 (9.7 h) 56.86

DYS 7 49204 (44.3 h) 24731 (21.7 h) 48.60
#15 3 49204 (27.3 h) 24727 (13.4 h) 44.91

Table 1. The number of utterances (and duration in hours) in
UASpeech training and test set with and without re-segment, as well
as the baseline ASR performance in terms of averaged word error
rate (WER) with DYS test set (15 speakers) using block 2.

speaker (with all 3 blocks) to decode the speech data itself again with
a biased language model (cf. cleanup scheme in [7]). Re-segmented
UASpeech data is summarized in Table 1, and baseline ASR perfor-
mance w.r.t. multi-speaker training (MST) with SAT GMM-HMM
for the DYS test set [12]1 benefits from this cleanup scheme, partic-
ularly for the MST-DYS set.

2.2. Forced-alignment

For SD GMM-HMM training (with blocks 1 and 3) as the basis
of forced-alignment process, 13-dimensional MFCCs incorporating
a spliced context window of length 9 frames are used, and these
are subsequently transformed to a 40-dimensional vector via lin-
ear discriminant analysis and maximum likelihood linear transform
(cf. [28]). SAT is employed based on feature-space maximum like-
lihood linear regression (fMLLR) [29]. A uniform language model
is generated based on the transcriptions of speech files, as well as
a word grammar network containing a silence model at the start
and one following single word, denoted as < sil > word. The
UASpeech phone set is listed in Table 2, and we further group the
phonemes into 4 types of vowels and 9 types of consonants based on
similar duration (cf. [30]) for speech tempo analysis at the phonetic
level (denoted as phoneme-based).

(V1) short vowels AH AO AX EH IH UH
Vowels (V2) medium vowels AE

#16 (V3) long vowels AA ER IY UW
(V4) diphthongs AW AY EY OW OY

(C1) glides L R W Y
(C2) unvoiced stops K P T
(C3) voiced stops B D G

Consonants (C4) nasals M N NG
#24 (C5) unvoiced fricatives F S SH TH

(C6) voiced fricatives DH V Z ZH
(C7) unvoiced affricates CH
(C8) voiced affricates JH
(C9) aspirates HH

Table 2. The grouping of phonemes according to UASpeech phone
set for speech tempo analysis at the phonetic level.

2.3. Speech Tempo Analysis
As shown in Fig. 1, speech tempo in the CTL set is relatively consis-
tent across the typical speakers in general. On average (across about
1.8 hours’ data for each speaker), the length of vowels is approxi-
mately 80 ms longer than that of consonants. By contrast, speech
tempo varies dramatically across dysarthric speakers in the DYS set,
which were grouped in 4 severity levels based on a subjective esti-
mate of perceptual speech intelligibility ratings [24], namely Severe,
Moderate-Severe, Moderate and Mild. Roughly speaking, averaged
phoneme duration seems to be proportional to the dysarthria severity,
i.e., the higher the severity, the longer the phoneme. However, this
does not always hold for speakers in group Severe, likely because
it is difficult for people with severe dysarthria to pronounce words
with explicit standard phonemes.

Due to the observed high inter- and intra-speaker variability in
terms of speech tempo, it is necessary to individually analyse the
dysarthric speech tempo and its relationship to typical speech at a
phoneme level. Based on the averaged length of vowels and conso-
nants across all utterances of each speaker, phoneme-based speech
tempo ratio between specific dysarthric and typical speaker can be

1We have released our baseline Kaldi scripts for UASpeech with and with-
out re-segments in https://github.com/ffxiong/uaspeech
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Fig. 1. Averaged duration of the phonetic groups (Table 2) across all
utterances in CTL and DYS (with an additional speech intelligibility
rating in right y-axis) training data for each speaker.

defined as

Rd←c(p) =
Td(p)

Tc(p)
, (1)

where Td(p) and Tc(p) denote the duration of the specific phoneme-
group p ∈ (V1−V4,C1− C9) from dysarthric speaker d and typ-
ical speaker c, respectively. When averaged over all p,Rd←c repre-
sents the speaker-based ratio in terms of general speaking rate.

3. SPEECH TEMPO ADJUSTMENT FOR ASR

Speech tempo adjustment using ratioRd←c(p) can be applied in the
test and the training stage of dysarthric speech recognition.

3.1. Test Stage

To better match the ASR model trained using typical speech alone,
dysarthric test speech can be adjusted towards typical speech before
decoding. This can be done in either the signal or the feature domain,
as depicted in Fig. 2. Typically, tempo adjustment is performed in
the signal domain, e.g., via WSOLA algorithm [31] (implemented
in SoX2 with tempo function) with preserved pitch and spectral en-
velope. Essentially, tempo changes in signals will result in the time
warping in MFCCs as well, indicating that tempo adjustment can be
directly performed in the feature domain via a simple interpolation
incorporating a sequence downsample operation.
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Fig. 2. Speech tempo adjustment of the dysarthric test data for ASR
trained using typical speech in the signal and the feature domain.

2http://sox.sourceforge.net

Due to the lack of alignment knowledge in dysarthric test data,
it is not possible to apply phoneme-based tempo ratios. Instead, a
speaker-based tempo ratio Rd←c can be determined using a small
amount of speech from the target dysarthric speaker, assuming that
the personalised speaking rate is fairly constant. The inverse tempo
ratio 1/Rd←c is then applied to normalise the dysarthric speech.

3.2. Training Stage

DNN-HMM based ASR generally benefits from training data aug-
mentation as DNN generalization will be enhanced. However, any
training-test mismatch introduced by data augmentation must be
minimized. It is therefore desirable to augment the training data by
simulating dysarthric speech that matches the characteristics of the
speaker to be recognised, and this can be achieved by tempo adjust-
ment of the typical training speech. Using the available training data
alignments, the phoneme-based tempo ratio in (1) can be applied.
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Fig. 3. Speech tempo adjustment of typical speech towards
dysarthric done in the feature domain for data augmentation in ASR
training stage. Right panel shows one example with different tempo
adjustment schemes w.r.t. C0 coefficient in MFCCs.

As illustrated in the right panel of Fig. 3, tempo adjustment in
the feature domain provides more smoothed MFCCs than that in
the signal domain (omitted in left panel, cf. Fig. 2), when com-
paring speaker-based tempo adjustment with SoX using the same
ratio Rd←c. Also, it can be clearly observed that phoneme-based
tempo adjustment provides a more accurate match of phoneme dura-
tion than other schemes when compared to MFCCs calculated from
real dysarthric speech, particularly with vowels. Note that phoneme-
based tempo adjustment in the signal domain using SoX is possible,
but excluded, as distortion was introduced at the boundary between
phonemes for concatenation that degraded ASR performance in our
pilot experiments.

4. EXPERIMENTAL SETUP AND RESULTS

The setting for SAT GMM-HMM training is the same as described
in Section 2.2. Hybrid DNN-HMM training is then applied using
chain model with time-delayed neural network (TDNN) [32], which
integrates the advantages from long temporal context extraction of
speech frames and connectionist temporal classification, but at the
cost of the requirement of a larger amount of training data. To this
end, speed perturbation is employed in the baseline to generate ad-
ditional 2 copies of the original training data by adjusting the pitch
and tempo (together) via SoX resampling algorithm with ratios of
0.9 and 1.1 [33].

Firstly, speech tempo adjustment is applied to the test stage for
ASR model based on multi-speaker training (MST) using typical
speech data in CTL training set (cf. Table 1), and speaker-based
tempo ratio Rd←c is determined by calculating averaged tempo
from CTL training data (all 13 speakers) and DYS training data
of each dysarthric speaker. In general, according to the estimated
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Fig. 4. Speaker-based tempo ratio between DYS and CTL training
data and applications to tempo adjustment in DYS test set with MST-
CTL TDNN model. For comparison, performance with SD-DYS
TDNN model, as well as data augmentation with equal amount (1x)
of augmented data to original SD training data is included.

speaker-based tempo ratio, the DYS test data is required to speed up
within 3 times to match better the ASR model trained with typical
speech (CTL). As shown in Fig. 4, tempo adjustment in the feature
domain slightly outperforms the process in the signal domain, in-
dicating that it is more effective to directly perform adjustment on
features than on time-domain signals. Note that in the following ex-
periments, results using tempo adjustment in the signal domain are
omitted. On average, 4.6% absolute WER reduction can be achieved
by tempo adjustment in the test stage and this benefit becomes more
noticeable for speakers with moderate and severe dysarthria.

On the other hand, performance with tempo adjustment on the
test stage is still far from comparable to results using speaker-
dependent model (SD-DYS), suggesting a personalised speech
recogniser especially for people with moderate and severer dysarthria.
By this, it further shows that data augmentation using typical speech
from CTL training set (randomly sorted) with an equal amount to
original SD-DYS training data can bring 4% absolute accuracy im-
provement on average, indicating that DNNs can make good use of
external data within the same vocabulary and leverage well between
dysarthric and typical speech even though they show very different
characteristics. Compared to the case without tempo adjustment,
the proposed speaker-based and phoneme-based speech tempo ad-
justment in the feature domain achieve further reduced WERs, and
a more consistent improvement across all 15 DYS speakers can be
observed, particularly for groups Severe and Moderate-Severe.

Training Severe Mod.-Severe Moderate Mild Overall

SD-DYS 72.65 32.25 32.70 13.44 34.71

+non-adjustment 68.22 30.74 26.66 9.15 30.61
+speaker-based 68.76 28.23 25.13 9.44 30.00

+V1−V4 69.33 29.13 25.47 9.62 30.50
+C1−C9 70.69 29.54 27.41 9.40 31.16
+phoneme-based 67.83 27.55 26.41 9.71 30.01

Table 3. Averaged WERs for 4 DYS Groups in terms of data aug-
mentation (1x) with different speech tempo adjustment schemes.

Fig. 5. Effectiveness of different tempo adjustment schemes for a
rising-scaled data augmentation (’all’ denotes the case with all the
available CTL training data which is around 4 − 5x), and perfor-
mance comparison to other state-of-the-art dysarthric ASR systems.

Table 3 further summarizes the detailed WERs in terms of
each DYS group when data augmentation is applied, to pinpoint
the individual advantage of different tempo adjustment schemes.
Phoneme-based tempo adjustment outperforms other schemes for
groups Moderate-Severe and Severe, indicating that this dynamic
tempo adjustment is necessary for dysarthric speech simulation that
better matches real dysarthric speech with a high inter-phoneme
variability of speech tempo (cf. Fig. 1). Further, it is not sufficient
to solely adjust vowels or consonants in this phoneme-based tempo
adjustment and it seems that vowels are more important to concern
than consonants.

The effectiveness of the proposed tempo adjustment in data aug-
mentation is further tested using more augmented data (from CTL
training set) on a rising scale w.r.t. the original SD training data from
each dysarthric speaker. Fig. 5 illustrates that with more augmented
data for SD-DYS training, a consistent performance improvement
can be achieved when augmented data is generated by the proposed
tempo adjustment, while performance becomes easily saturated or
even degrades when typical speech data that exhibits large mismatch
to original dysarthric training data is directly adopted for data aug-
mentation. This is particularly noticeable for groups Moderate to Se-
vere, and when all the available CTL training data is used, phoneme-
based scheme yields the best overall WER of 27.88%, which is
also better than the reported best results from other state-of-the-art
dysarthric ASR systems [17, 14, 18].

5. CONCLUSIONS
This paper presented two approaches for improving dysarthric
speech recognition performance based on modification of typical
speech via speech tempo adjustment operating at the phonetic level
and in the feature domain. Results showed that data augmentation
using temporally modified typical speech is an effective strategy and
can improve personalised dysarthric ASR performance for moderate
to severe dysarthric speakers. The benefits of data augmentation
were seen to increase as more simulated data was used until even-
tual saturation. To improve performances further, more work is
needed to better model the mapping of typical to dysarthric speech
dynamics at every single phoneme level.
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