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ABSTRACT

A speaker embeddings framework achieves state-of-the-art speaker
recognition performance by modeling speaker discriminant informa-
tion directly using deep neural networks (DNNs). After the introduc-
tion of neural network based speaker embeddings, researchers have
explored the requirements for training an effective embeddings net-
work. However, the domain of the data used for system development
should match the domain of operation for optimal performance. In
this paper, we investigate the sensitivity of domain mismatch in the
embeddings space. Specifically, degradation in performance is ob-
served when back-end scoring with embeddings is performed with
out-domain data. To compensate for the domain mismatch, we pro-
pose two novel deep domain adaptation techniques based on autoen-
coder architectures trained on embeddings in an unsupervised fash-
ion. The results show that domain mismatch can be compensated
effectively using autoencoders to adapt the out-domain data to in-
domain.

Index Terms— deep domain adaptation, speaker embeddings,
autoencoder, score normalization, speaker recognition

1. INTRODUCTION

Speaker recognition technology has been greatly influenced recently
by the use of deep neural networks (DNNs). A notable performance
gain is obtained when automatic speech recognition (ASR) DNNs
are used to replace the universal background models (UBMs) for
extracting sufficient statistics for i-vector computation [1, 2, 3]. Al-
though mixtures of the GMMs are considered to be related to pho-
netic events, DNNs provide a more efficient way to model the acous-
tic contents of the speech signal by representing each phonetic event
by a number of tied-triphone states referred to as senones. More re-
cently, speaker embedding frameworks have emerged by combining
all the necessary steps for speaker classification directly inside the
DNN framework. These frameworks have shown impressive per-
formance in speaker recognition tasks, providing sufficient training
data for successful implementation. The objective of the embeddings
training is to maximize the same speaker probability and minimize
the between speaker probability. Thus, the network learns speaker
discriminant information during training by classifying speakers.

Several embedding frameworks have been proposed for the text
independent speaker recognition task, among which “d-vector” [4]
and “x-vector” [5, 6, 7] systems, have proven to be very efficient.
In [4], Variani et al. computed the average of the output activations
from the last hidden layer using standard feed-forward propagation
in the trained embeddings network to represent the speaker models,
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referred to as “d-vector”. Snyder et al. [5, 6, 7] proposed the “x-
vector” system using a feed-forward DNN, which maps the stacked
input features fed to the network into speaker embeddings. This
network consists of five fully connected hidden layers, a temporal
pooling layer and a softmax layer. The pooling layer aggregates
the average and standard deviation of the activations and pass it to
the last hidden layer. The embeddings (i.e., speaker discriminative
features) were later extracted from the activation of an affine layer
on top of statistics pooling.

Recently, McLaren et al. [8] studied different aspects of mod-
eling robust speaker embedding systems. They explored the effects
of speech activity detection (SAD), data degradation of the training
data by adding different levels of noise, reverberation, music and
pitch. They showed that a successful and robust speaker embedding
system depends on ensuring the use of a large cohort of speakers,
as well as artificially degrading the training data as much as pos-
sible with different types of noise, and with a lower reverberation
and SAD threshold. All of these investigations were performed us-
ing PRISM training data [9] for the DNN embeddings, and the NIST
speaker recognition evaluation (SRE) data for the probabilistic linear
discriminant analysis (PLDA) back-end scorer training.

The PLDA speaker recognition system is very sensitive to the
training data and its performance degrades quite substantially when
training the PLDA models on out-domain data. We always have to
ensure sufficient training data as well as providing target domain
data for a robust PLDA speaker modeling [10]. This domain sen-
sitivity of the PLDA modeling was first introduced as a challenge
in the Speaker and Language Recognition Workshop at Johns Hop-
kins University (JHU) in 2013 [11]. Two domains were investi-
gated in this challenge. The source or out-domain data were col-
lected from the LDC Switchboard corpus (SWB) telephone dataset
and the target or in-domain data were collected from National In-
stitute of Standards and Technology (NIST) telephone dataset. The
findings showed that domain mismatch adds around 15-40% perfor-
mance degradation in the i-vector based PLDA speaker recognition
performance. Several unsupervised [12, 13, 14, 15, 16, 17, 18], and
supervised [19, 20, 21, 22] i-vector based PLDA domain adaptation
techniques have recently been proposed to address this issue of do-
main sensitivity inside the i-vector subspace.

To date, very few studies have been reported addressing the
domain mismatch issues for the end-to-end speaker recognition sys-
tems. Despite the initial success of previously developed domain
compensation techniques, domain mismatch issues have not been
completely solved. For example, it is not clear if inter-dataset vari-
ability compensation (IDVC) [15], and domain-invariant covariance
normalization (DICN) [16] can be successfully applied on the em-
beddings subspace. Using the dataset means to model the mismatch
may not be sufficient since mismatch may also manifest in the
higher-order statistics of the dataset [23]. Few recent works have ex-
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plored the use of a neural network (i.e., autoencoder) to reduce inter-
dataset mismatch in unsupervised settings, and reported promising
results when i-vectors are used for training autoencoder [23, 24].
The maximum mean discrepancy (MMD) metric is the most com-
monly used method for comparing between the two domains as well
as minimizing distribution shift between domains [25]. In contrast
to MMD, correlation alignment (CORAL) aligns the second-order
statistics between source and target distributions using a linear trans-
formation [26]. CORAL is later extended to deep neural networks
(deep CORAL) to learn a nonlinear transformation [27].

This paper studies the domain sensitivity of the DNN embed-
dings network and reports the performance degradation of the system
resulting from the influence of the domain mismatch in the train-
ing data. This is accomplished by training the DNN embeddings
with both in-domain and out-domain data, and later investigating the
effects of domain variability in the embeddings space prior to the
PLDA training. The paper also proposes a deep learning based solu-
tion to the domain mismatch problem.

To address the domain mismatch, we have employed autoen-
coders for deep domain adaptation. In the field of computer vision,
deep domain adaptation is referred as a technique that employs deep
networks to solve the problem of domain shift between the source
and target domains. It is generally assumed that the source and tar-
get domains are similar and the knowledge transfer between the two
domains can be performed in one step [28]. We make similar as-
sumptions in our approach, and in the supervised setting, the tar-
get label is given. However, for unsupervised case, the focus is on
learning domain invariant features by minimizing the domain distri-
bution discrepancy. In our work, CORAL is used as the loss func-
tion of autoencoder trained on speaker embeddings, in contrast, [29]
used CORAL directly on out-domain and in-domain speaker embed-
dings for unsupervised domain adaptation. We show that the autoen-
coder trained to learn shared representations of the source and target
domain data is capable of producing domain compensated features
while preserving the speaker information. In addition, we have pro-
posed a two-stream autoencoder using separate weights to explic-
itly model the domain shift [30], and at the same time employing
CORAL loss to minimize the discrepancy between source and target
domains.

This paper is organized as follows. Section 2 describes the DNN
embeddings system, autoencoder setups, and PLDA back-end setups
used in this paper. Section 3 outlines the system protocol and exper-
imental methodology. Experimental results are discussed in Section
4. Finally, Section 5 concludes the paper.

2. SYSTEM DESCRIPTION

2.1. Speaker embeddings network

We used a feedforward end-to-end DNN to embed the speaker dis-
criminant information directly into the DNN architecture proposed
by Snyder et al. [5, 6, 7]. This network consists of five fully con-
nected hidden layer working on a frame level features, followed by a
temporal pooling layer, two hidden layers and a softmax layer work-
ing on utterance level features. The temporal pooling layer collects
the mean and standard deviations of the activations from the previ-
ous layer for all of the frames corresponding to the same session.
The embeddings were extracted from the 6th hidden layer after re-
moving the last two layers from the network. Our x-vector systems
were developed based on the nnet3 Kaldi recipe [31].

Fig. 1. Autoencoder architecture used in this paper.

Fig. 2. Two-stream autoencoder with separate weights are trained
jointly. The input data to the first layer on the top and to the first
layer on the bottom are from source and target domains, respectively.
CORAL loss is employed to reduce discrepancy between source and
target domains.

2.2. Domain adaptation using Autoencoder

Our first proposed approach employs a basic autoencoder to learn
high-level representation of embeddings in an unsupervised man-
ner. A typical autoencoder consists of an encoder network which
encodes the input, extract significant characteristics of the input, and
followed by a decoder network. Let us denote the sets of embeddings
Xs and Xt from source and target domains, respectively. Since an
autoencoder is used to reconstruct the union of data from two differ-
ent domains with the least possible amount of distortion, the learned
features embedded in the latent space can represent both the source
and target domain data. Thus, we concatenated the data from both
source and target domain as Xin and the network was trained by
minimizing the reconstruction errors, i.e., mean squared error loss:
L(Xin,X′in) = 1

N

∑N
i=1 ||X

(i)
in − X′(i)in ||2 with N the amount of

training samples. The X′in is the reconstructed version of the origi-
nal input Xin.

The autoencoder network contains four layers, the 1-D convolu-

5812



tion layer conv1, followed by a fully connected layer FC1 (512 neu-
rons), a code layer FC2 (512 neurons), and a fully connected layer
FC3 (512 neurons). The Sigmoid activation function was employed
after each layer in the network except the code layer. The domain
compensated embeddings were extracted from the code layer. We
did not reduce the dimension of embeddings to retain the speaker
information as much as possible. Figure 1 depicts the autoencoder
network used for our experiments. Tensorflow [32] is used to imple-
ment the model.

2.3. Domain Adaptation using Two-Stream Autoencoder

We addressed the impact of domain shift by making the source data
distributions to be as similar as the target data distributions. In our
case, we used a CORAL loss computed from the learned feature dis-
tributions between the source and target domains. Hence, we con-
structed a two-stream autoencoder where the weights between the
two streams were not shared. The input to the first stream was input
data from source domain, and the input to the second stream was
data from target domain. The two-stream autoencoder was trained
by minimizing the reconstructions errors from both source and tar-
get domains, and at the same time the CORAL loss,

L(Xs,X′s,Xt,X′t) = L(Xs,X′s) + L(Xt,X′t) + LCORAL (1)

where L(Xs,X′s) and L(Xt,X′t) are the reconstruction loss for
source and target domains, respectively. The CORAL loss is defined
as,

LCORAL =
1

4d2
||Cs − Ct||2F (2)

where Cs and Ct denote the covariance matrices (second-order
statistics) of the source and target d-dimensional features, respec-
tively. The ||.||2F denotes the squared matrix Frobenius norm.

Figure 2 depicts the two-stream autoencoder network used for
our experiments. The same network architecture (using the configu-
ration in Figure 1) is used for both source and target streams.

2.4. PLDA Back-end Scoring

We used PLDA back-end scorer to calculate the scores between en-
roll and test x-vectors. The dimension and channel effects of the x-
vectors were reduced using linear discriminant analysis (LDA) sub-
space transformation by selecting 150 eigenvectos from 512 based
on highest eigen values. Later, length normalization was applied
prior to the PLDA modeling. The PLDA scorings between the target
and test embeddings were computed using the batch likelihood ratio
[33]. For a given target sample xtarget and test sample xtest, the
batch likelihood ratio can be calculated as follows,

ln
P (xtarget,xtest | H1)

P (xtarget | H0)P (xtest | H0)
(3)

where H1: The speakers are same, H0: The speakers are different.
We used the PLDA implementation based on [34] in Kaldi toolkit.

3. EXPERIMENTAL METHODOLOGY

3.1. Datasets

The training datasets were collected from NIST, collectively referred
as SRE (in-domain), and SWB (out-domain) datasets as reported in
DAC [11]. The in-domain dataset consists of 36,470 sessions gath-
ered from NIST-2004, 2005, 2006 and 2008 SRE datasets.The out-
domain dataset contains 33,039 sessions telephone data collected

Table 1. Performance comparison of baseline speaker recognition
systems, evaluated on NIST-2010 extended core-core condition.

DNN PLDA S-Norm EER(%)Embeddings

Out-domain

Out-domain
– 9.11

Out-domain 12.36
In-domain 4.88

In-domain
– 1.80

Out-domain 2.89
In-domain 2.19

Pooled
– 1.99

Out-domain 3.35
In-domain 2.20

In-domain

Out-domain
– 15.54

Out-domain 20.59
In-domain 6.97

In-domain
– 1.89

Out-domain 2.83
In-domain 2.28

Pooled
– 1.95

Out-domain 3.28
In-domain 2.17

from Switchboard I, II phase I, II, III corpora. These training data
are used for both DNN embeddings and PLDA back-end scorer train-
ing. We performed data augmentation strategy where noise and re-
verberation are added into the original data to increase the amount
and the diversity of the existing data. The MUSAN noise corpus
and simulated room impulse responses (RIR) samples are available
in http://www.openslr.org/. A subset of 5,000 in-domain
data pooled from NIST 2004, 2005, 2006 and 2008 datasets are used
for score normalization (using S-Norm) [35, 36]. For PLDA adapta-
tion, a randomly selected unsupervised 3,000 utterance are collected
from the in-domain dataset. The performances were evaluated on ex-
tended core-core telephone-telephone condition of NIST 2010 SRE
plan and the performances were measured using the equal error rate
(EER).

3.2. Feature Extraction

The 23-dimensional feature-warped MFCCs with ∆ and ∆ ∆ co-
efficients were extracted from the 8 kHz speech signal using 25 ms
frames with 10 ms frame shift. The silence frames were removed
from the features using energy-based voice activity detection (VAD).
For the DNN embeddings training, speakers less than 8 sessions and
sessions having less than 5 seconds of conversation were removed
from the training data. The embeddings features were extracted from
the 6th hidden layer after removing the last two layers from the net-
work. The domain compensated embeddings were extracted from
the code layer FC2 of the autoencoder, and for the two-stream au-
toencoder features were extracted from the FC2 layer of the top
network (source stream).

4. EXPERIMENTAL RESULTS

4.1. Baseline performance

This section presents the performance of DNN embeddings systems
to understand the sensitivity of embeddings to a specific domain
data. No adaptation techniques had been applied for this sets of
experiments. Experimental results presented in Table 1 shows that
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Table 2. Performance comparison of autoencoder (AE) based do-
main adaptation, evaluated on NIST-2010 extended core-core con-
dition. Out-domain data are used for training DNN embeddings
and PLDA model. Unsupervised PLDA adaptation is referred as
adPLDA.

System Backend Score EER(%)normalization

AE
PLDA – 6.25

s-norm 4.58

adPLDA – 3.50
s-norm 3.36

AE + Coral
PLDA – 6.17

s-norm 3.40

adPLDA – 4.71
s-norm 3.20

the out-domain PLDA performs catastrophically worse regardless
of the DNN embeddings training data. However, out-domain DNN
embeddings performs relatively well compared to the in-domain
system. The reason behind this performance difference is that while
training the DNN embeddings with out-domain data, it learns the do-
main specific information which produces a more efficient speaker
embeddings, leading to a domain mismatch compensated PLDA
speaker models. Now despite of the DNN embeddings training, the
in-domain PLDA perform relatively well (1.80∼1.89%) compared
to the out-domain systems, which suggests that PLDA training data
is very crucial for the DNN embeddings speaker recognition system.
Specifically, the target domain data should always be provided for
the PLDA training for a reliable system performance.

We also investigated the performance of the PLDA training with
pooled in-domain and out-domain data. One can argue that pooling
PLDA training data is a relatively straight-forward domain adapta-
tion, but this is really important for the sake of the investigation in
order to understand that how much system performance varies if we
add target domain data for the PLDA training. From the experimen-
tal results, it is clear that the system performance is within an accept-
able range of 1.95∼1.99% compared to the in-domain PLDA perfor-
mance for both in- and out-domain DNN embeddings. Therefore, it
proves that a seen target domain PLDA model is a key to a success-
ful speaker recognition system implementation. Score normalization
also plays a vital role and the S-Norm training data should always
match to the testing condition for improving overall system perfor-
mance. For out-domain PLDA system, in-domain S-Norm yielded
improvement of at least 46% relative (i.e., from EER of 9.11% to
4.88%). These results are also consistent for both in-domain and
pooled PLDA systems as well.

4.2. Domain adaptation performance

Table 2 presents the performance of unsupervised domain adapta-
tion using techniques presented in Section 2.2 and 2.3. For these
experiments, we considered that we have only access to unlabeled
in-domain data for adaptation. The autoencoder was trained by in-
putting both SWB (out-domain) and SRE (in-domain) embeddings.
Both DNN embeddings and PLDA were trained on out-domain data.
We also took advantage of the unsupervised PLDA adaptation [7]
and in-domain mean shift using unlabeled in-domain data. Exper-
imental results show that using a simple autoencoder (AE) for do-
main adaptation gains 31.4% and 58% (relative) performance im-
provements for PLDA and adapted PLDA (adPLDA) compared to

the baseline performance, respectively. Also, an additional 6.2%
(from 4.88% to 4.58%) and 31.1% (from 4.88 to 3.36%) perfor-
mance improvements can be gained using a score normalization with
the in-domain data for PLDA and adPLDA, respectively.

For domain mismatch compensation, we also employed two-
stream autoencoder, out-domain and in-domain embeddings are in-
putted in parallel with CORAL loss estimated from the feature distri-
butions from both pipelines. The motivation behind is to minimize
the domain variability, while training two autoencoders jointly by
minimizing the reconstruction errors and CORAL loss. Now, com-
pared to the out-domain baseline performance, the two-stream au-
toencoder system (AE + Coral) yielded performance improvements
of 32.3% (from 9.11% to 6.17%) with the normal PLDA system. By
employing adapted PLDA this performance can be further improved
to 48.2% (from 9.11% to 4.71%), compared to the out-domain base-
line. Similar to the single autoencoder system, the best performance
was achieved by using score normalization with in-domain data. As
a result, the PLDA system obtained 30.3% (from 4.88% to 3.40%)
and adPLDA system achieved 34.4% (from 4.88% to 3.20%) perfor-
mance improvements (relative) compared to the out-domain base-
line.

5. CONCLUSIONS

In this paper we have investigated the effects of training DNN
embeddings speaker recognition system on the non-target domain
data. We found that out-domain DNN embeddings training has very
limited effects on the overall speaker recognition performance, as
long as we provide proper training setup and sufficient training data.
However, extracted embeddings for PLDA training has a crucial
effect on the overall system performance. The out-domain PLDA
modeling degrades the system performance substantially, although
this large performance degradation can be remedied by employing
in-domain score-normalization technique. We also presented two
domain adaptation setups using autoencoders to compensate this
mismatch prior to the PLDA training. Experimental results showed
that employing simple autoencoder can suppress this domain vari-
ability from the PLDA training data. The two-stream autoencoder
trained on out-domain and in-domain embeddings can successfully
compensate this domain mismatch further. Also, using this two-
stream autoencoder in together with unsupervised PLDA adaptation
and in-domain score normalization achieved the best performance
so far.
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