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ABSTRACT

Speaker diarisation systems often cluster audio segments using
speaker embeddings such as i-vectors and d-vectors. Since different
types of embeddings are often complementary, this paper proposes
a generic framework to improve performance by combining them
into a single embedding, referred to as a c-vector. This com-
bination uses a 2-dimensional (2D) self-attentive structure, which
extends the standard self-attentive layer by averaging not only across
time but also across different types of embeddings. Two types of
2D self-attentive structure studied in this paper are simultaneous
combination and consecutive combination, which adopt single and
multiple self-attentive layers respectively. The penalty term in the
original self-attentive layer, which is jointly minimised with the
objective function to encourage diversity of annotation vectors, is
also modified to obtain not only different local peaks but also the
overall trends in the multiple annotation vectors. Experiments on the
AMI meeting corpus show that our modified penalty term improves
the d-vector relative speaker error rate (SER) by 6% and 21% for
d-vector systems, and a 10% further relative SER reduction can be
obtained using the c-vector from our best 2D self-attentive structure.

Index Terms— Speaker diarization, d-vector, self-attention,
model combination

1. INTRODUCTION

Speaker diarisation finds “Who spoke when” in a multi-speaker
audio stream. This involves segmenting the audio into speaker-
homogenous intervals followed by clustering into groups that should
correspond to the same speaker. A recent trend for clustering sys-
tems is to first convert variable length audio segments to a fixed
length vector, referred to as an embedding, and perform cluster-
ing using such vectors. More broadly, the use of embeddings has
become widespread in many speech and language processing tasks.

Traditionally, i-vectors have been used as the embeddings for
speech segments and are produced using factor analysis in the total
variability space [1, 2, 18, 19]. Recently, d-vectors based on out-
puts from an intermediate layer of a deep neural network (DNN)
trained for speaker classification, have shown superior performance
over i-vectors in a range of tasks [3–7, 9, 20, 21]. Although recent
d-vector extraction systems have investigated different DNN archi-
tectures, such as deep feed-forward models [3, 5, 23, 25], versions
of recurrent neural networks (RNN) [6, 24], and convolutional re-
current neural networks [7], each architecture tends to produce em-
beddings with different strengths and weaknesses. Therefore, it is
natural to try and take advantage of the complementarity among dif-
ferent embeddings to achieve improved performance and robustness
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by combining different embedding vectors. For instance, a method
that concatenates a d-vector and an i-vector was studied in [15].

In this paper, a generic framework which combines different em-
bedding vectors via an attention mechanism is proposed. Extend-
ing the idea of d-vector extraction using a single temporal attention
model [21, 23], the proposed attention mechanism combines out-
puts across both time and across embeddings from different systems
and therefore has a 2D attentive structure. In particular, instead of
dynamically estimating a single set of weights, a “multi-head” self-
attentive layer [8, 10] is used for combination throughout the paper.
The annotation vectors found in the self-attentive layer are used to
find a linear combination of embeddings and are computed based on
the embedding vectors themselves, and multiple annotation vectors
are used to extract a more diverse combination result. The training
objective function for the self-attentive layer includes a penalty term
which causes the annotation vectors to be diverse. This paper modi-
fies the penalty term so that the multiple annotation vectors produce
not only distinct spiky distributions for local attention focus, but also
smooth distributions that reveal overall trends.

Two types of DNN models are studied as example d-vector sys-
tems involved in the combination, namely a feedforward TDNN sys-
tem [22] and a high order recurrent neural network (HORNN) sys-
tem [11]. Two alternative structures are proposed to implement the
2D attention mechanism. First, the simultaneous attention approach
where the annotation matrix produced by a single attention model is
learned across all vectors extracted at each time point by each sys-
tem, and second the consecutive attention approach where a separate
attention across time is performed inside each system before the final
attention across systems. Speaker embeddings generated using this
2D attentive mechanism are named c-vectors. Experimental results
on speaker clustering show that our modified penalty term improves
d-vector extraction by a clear margin, and c-vectors with both 2D
attentive structures outperform the individual d-vector systems with
the consecutive structure giving the lowest error rate.

The remainder of this paper is as follows: Section 2 reviews the
self-attentive structure. Two types of 2D attentive combination along
with the modified penalty term are introduced in Sec. 3. Experimen-
tal setup and results are in Secs. 4 and 5 followed by conclusions.

2. SELF-ATTENTIVE STRUCTURE

An important step of d-vector generation is the combination of em-
bedding vectors h(t) extracted at each time t in a window of several
seconds. As these embedding vectors may have different levels of
speaker-discriminative ability, they should be combined with differ-
ent weights. Therefore, a self-attentive layer is introduced to achieve
a dynamic linear combination, where an annotation matrix A, com-
puted from the input vectors, provides the combination weights.
Each column of the annotation matrix is an annotation vector which
gives a set of scaling factors that weights the importance of each
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input before summing them. Specifically, if T input vectors within
a window forms a T × n matrix H = [h(1),h(2), . . . ,h(T )]T

where n is the dimension of each vector, the annotation matrix can
be calculated using Eq. (1) and applied to the inputs as in Eq. (2)

A = Softmax(tanh(HW1)W2), (1)

E = ATH, (2)

where E (h× n) is the output and A (T × h) is the h-head annota-
tion matrix. A is generated by passing the input matrix through two
fully-connected layers with weight matrices W1 and W2 respec-
tively, and the Softmax is performed column-wise to ensure each an-
notation vector sums to one. When a multi-head self-attentive layer
is used (i.e. h > 1), to encourage different heads to extract dissimilar
information, a penalty term in Eq. (3) is added to the cross-entropy
loss function during training.

P = µ||ATA− I||2F = µ
( h∑

i

(ai
Tai − 1)2 +

h∑
i,j,i 6=j

(ai
Taj)

2
)
,

(3)
where ai is the annotation vector, I is the identity matrix and || · ||F
denotes the Frobenius norm. The degree of influence of this term is
adjusted by µ. As all terms in Eq. (3) are non-negative, minimising
the cross terms, (ai

Taj)
2, encourages the annotation vectors to be

orthogonal, while minimising the diagonal terms (ai
Tai − 1)2 en-

courages the annotation vectors to have fewer non-zero terms, ide-
ally being one-hot vectors. Therefore, the effect of the penalty term
will be to put weights on different but very few terms in the anno-
tation vectors. However, the weight trend of each annotation vector,
whether to be spiky or smooth, can also be controlled, see. Sec. 3.3.
In the rest of the paper, the output from the self-attentive structure
in a single system is denoted using E, as in [10], while that incor-
porating model combination is denoted using C, for c-vectors. For
clarity, the output of h-head self-attentive layer is expressed as:

E = [e1, e2...eh] = SelfAtten
(
h(1),h(2), . . . ,h(T )

)
. (4)

3. 2D SELF-ATTENTIVE TOPOLOGIES

In this section, the two kinds of 2D self-attentive structures are in-
troduced, and the modification to the penalty term is also explained.

3.1. Simultaneous Combination Architecture

Simultaneous Self-attentive Layer

CSimult.

h1(1)

System 1

h1(2) h1(T)

System 2

h2(1)h2(2) h2(T)

System k

hk(1) hk(2) hk(T)

Fig. 1. c-vector with the simultaneous combination architecture.

One natural way of performing the 2D attention is to add up all
the embeddings extracted from each frame by each network simulta-
neously using one annotation matrix. This is achieved by extending

the row dimension of matrix A in Eq. (1) from T to k × T where k
is the number of systems to be combined, as shown in Eq. (5).

CSimult. = SelfAtten
(
h1(1), . . . ,hi(t), . . . ,hk(T )

)
. (5)

The c-vector of this combination is the concatenation of the embed-
dings each generated using one annotation vector, as shown in Fig. 1.
This structure is not only able to reflect the importance of each frame
in terms of the ability to distinguish speakers, but also able to weight
the two network outputs frame by frame.

3.2. Consecutive Combination Architecture

An alternative proposed uses consecutive combination where self-
attentive combination is first performed across time for each system
with separate annotation matrices, and another self-attentive layer is
applied across all the systems thereafter, as illustrated in Fig. 2. As
the self-attentive layers for each system can be designed differently,
this combination retains more individuality of each system while in-
troducing more flexibility.

Self-attentive Layer over Models

h1(1)

System 1

h1(2) h1(T)

System 2

h2(1)h2(2) h2(T)

System k

hk(1) hk(2) hk(T)

E1 E2 Ek

Self-attentive Self-attentive Self-attentive

CConsec

Fig. 2. c-vector with the consecutive combination architecture.

Particularly, it is interesting to investigate the following two
types of second stage combination. First, model combination could
be performed on the multi-head output where all heads in the d-
vector share the same annotation vector, as shown in Eq. (6).

CConsec1 = SelfAtten
(
E1, . . . ,Ei, . . . ,Ek

)
, (6)

where Ei is the multi-head output generated from each individual
system. Secondly, it could also be performed at the head level where
different heads from the same system can be assigned different
weights, as shown in Eq. (7). This relaxes the constraint on the num-
ber of heads for each system which has to be equal in the previous
combination method.

CConsec2 = SelfAtten
(
e11, . . . , e1h, . . . , ek1, . . . , ekh

)
, (7)

As the aspects of speaker characteristic information encapsulated in
the d-vectors for different systems may be ordered differently, a di-
rect weighted average of the output vectors may be inappropriate.
Therefore, a fully-connected (FC) layer that transforms the output of
each system is introduced before model combination, as shown in
Eq. (8).

E∗i = ReLU(WTEi). (8)
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Further extending the method above, instead of using self-attention
for model combination, embeddings from different systems are con-
catenated and passed through an FC layer for transformation and
combination together, as shown in Eq. (9).

CConsecFC = ReLU
(
WT [E1, . . . ,Ei, . . . ,Ek]

)
, (9)

A similar approach was proposed in [15] for speaker verification
tasks where the i-vector is fused with an RNN output by direct con-
catenation. Nevertheless, the proposed c-vector method allows joint
training of the complete model, and by including the FC layer, the
order of elements in e.g. an i-vector could also be altered.

3.3. Penalty Term Modification

The penalty term for multi-head self-attention in Eq. (3) was origi-
nally designed for sentence embeddings [8] to focus on as few words
as possible while encouraging different annotation vectors to be es-
timated. Such a setting is not necessarily transferable to our task,
since the minimum value of the penalty term can be reached only
when all the annotation vectors become different one-hot vectors.
Therefore, the following modified penalty term is proposed:

P = µ||ATA−Λ||2F , (10)

where Λ is a diagonal matrix replacing I in Eq. (3). The diagonal
values λi = Λii control the smoothness of the annotation vectors.
We term annotation vectors that only focus on a few input vectors
“spiky”, while “smooth” annotation vectors reflect the general trends
of importance. For a single annotation vector, a, the penalty term be-
comes a quadratic function of λ. For the annotation vector a taking
a one-hot form and more evenly distributed forms, the variation of
the penalty term P against λ is plotted below.

P1

P3

a1 = [0.01, 0.01, …, 0.01]T 
a2 = [0.5, 0.5, 0, …, 0]T 
a3 = [1, 0, …, 0]T

P2

P= (aTa−λ)2
λ

Fig. 3. Penalty term P with different λ can have its minimum value
shifted, to generate “spiky” or “smooth” annotation vectors.

As the dashed line moves toward the left, which represents de-
creasing λ, the lowest point changes from P3 to P2 to P1, and
hence the annotation vector that gives the minimum value of the
penalty term shifts from a3 to a2, and eventually reaches the evenly
distributed a1. Therefore, by varying the value of λ between 1/T
which is the l2-norm of uniform vector a1, and 1 which is the l2-
norm of one-hot vector a3, the smoothness of the weight can be con-
trolled. The multi-head system can use this modified penalty term to
give some smooth annotation vectors while keeping the rest spiky as
before, and these settings will also vary between systems according
to their characteristics.

4. EXPERIMENTAL SETUP

4.1. Data Preparation

All of the models were implemented using an extended version of
HTK [26], and trained and tested on the AMI corpus [17] which
contains group meetings recorded at four different sites. The full
training set which contains 135 meetings with 149 speakers was used
which is further split into 90% for model training and 10% cross
validation set for hyper-parameter tuning. For evaluation, instead
of using the full dev and eval sets, we use the meetings recorded
at IDIAP, Edinburgh and Brno which are the sets frequently used
for evaluation of speaker diarisation [7, 20], and which are more
consistent with our observations on other datasets. The partition of
the dataset is shown in Table 1.

Meetings Speakers

Train 135 149
Dev 14 17 (4 seen in Train)
Eval 12 12 (0 seen in Train)

Table 1. Details of the AMI data set based on the official speech
recognition partition. TNO meetings excluded from Dev and Eval.

During both training and testing, the system input is 40-d log-
mel filter bank features (25 ms frame size, 10 ms frame increment)
extracted from Multiple Distance Microphone (MDM) data after
beam-forming using BeamformIt [27].

4.2. Model Specification

The two DNN systems used as an example for combination in this
paper are a TDNN and HORNN. The TDNN structure resembles the
one used in the x-vector extraction system [9], except the statistical
pooling layer is replaced with a self-attentive layer as described in
[10]. The HORNN used here has ReLU activation functions, and
adds connections from both the previous hidden state and the state 4
time steps from the current RNN input. This provides a more direct
access to the long-term memory to prevent the vanishing gradient
problem while using far fewer parameters than the LSTM structure.

To extract window level d-vectors, a 2-second sliding window
was applied with a 1-second overlap between adjacent windows. A
two-layer HORNN was used with a state output dimension of 256
and a projection dimension of 128. For the TDNN, the original
512-dimensional system in [10] was used. In order to have simi-
larly performing systems, the HORNN uses fewer parameters than
the TDNN, as the former uses parameters in a more efficient way.
Then, both network outputs are reduced to 128-d vectors using the
fifth layer of the TDNN and an additional fully-connected layer for
the HORNN before feeding into the self-attentive layer. The simul-
taneous combination learns a set of 5 weight annotation vectors. The
consecutive combination has 5 heads from each system, and the sec-
ond combination stage uses a single head and 5 heads for the first
and second types of attentive combination respectively.

After the combination stages, a bottleneck layer was used to map
the multi-head c-vector output down to a 128-dimensional represen-
tation space, which is then used as the c-vector for clustering. Two
individual networks are initialised with frame-level pre-training, and
then jointly trained in the combination networks. Furthermore, in-
stead of using a normal softmax at the output layer, the “Asoftmax”
function [14] was adopted with m = 1 in order to provide better
angular discrimination. This further helps the clustering process as
the affinity matrix is constructed using cosine distances.
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DiarTK d-vector
TDNN

d-vector
HORNN

c-vector
Simult.

c-vector
Consec. 1

c-vector
Consec. 2

c-vector
Consec. FC

#Params. N/A 1.76M 0.29M 2.03M 2.46M 2.07M 2.87M
Dev 23.62% 13.40% 13.40% 12.73% 13.18% 12.22% 12.75%
Eval 23.31% 14.75% 15.97% 16.28% 13.53% 12.99% 15.00%

Table 2. Speaker Error Rate (SER) on Dev and Eval sets. “#Params.” is the number of parameters in million (M) used in d-vector/c-vector
extraction. Simult. and Consec. refer to the simultaneous and consecutive combination architectures.

4.3. Diarisation Pipeline

As the focus of this paper is on the use of speaker embeddings in
clustering, similar to e.g. [20, 28, 29], experiments reported here use
the AMI manual segments and report only the speaker error (there
is no missed or false alarm speech). As in training, a 2-second slid-
ing window with 1-second overlap is applied to the segments, and
c-vectors extracted by forward propagation to the bottleneck layer.
These window level embeddings are then clustered using the spec-
tral clustering methods proposed in [6]. The threshold value used
in the affinity matrix pre-processing stage is tuned for each system
separately on the dev set, and applied to the eval set. Scoring uses
the setup from the NIST-RT evaluations with a 0.25 second collar.

4.4. Baseline Systems

The first baseline used DiarTK [13] to perform bottom-up agglom-
erative clustering based on the information bottleneck principle [12,
16]. It used 19-d MFCCs and the maximum window length to be
2 seconds in DiarTK. The values of β and NMI threshold were set
to be 10 and 0.3 respectively. Another baseline uses the statistical
pooling layer [9] in the two example DNNs which calculates the
mean and standard deviation across the frames instead of using the
self-attentive layer.

5. RESULTS

The reductions in SER obtained for both the TDNN and HORNN by
using the modified penalty term are shown in Table 3.

Dataset Mean+std.
deviation

Attention
(original)

Attention
(modified)

HORNN Dev 21.00% 16.72% 13.40%
Eval 23.70% 20.55% 15.97%

TDNN Dev 17.46% 15.02% 13.40%
Eval 19.22% 14.95% 14.75%

Table 3. d-vector system SERs with different embedding extraction
schemes. “Attention” columns are self-attentive layers with the orig-
inal (5 spiky) and our modified (3 spiky+2 smooth) penalty terms.

Compared to the d-vector using mean and standard deviation,
there were reductions in SER using the self-attentive layer with
the original penalty term. The modified penalty term further gives
relative reductions in SER of 6% for the TDNN and 21% for the
HORNN system. The effect of changing λ in the penalty term can
be seen in Fig. 4, where each curve represents one annotation vector
across 200 frames in a selected window corresponding to a specific
λ value. The curve with λ = 1.0 provides two spikes at the 150-th

and 190-th frames respectively, while the curve with λ = 0.2 re-
flects a general trend of which regions of frames are more important.

an
no

ta
tio

n 
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 v
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ue
s

frame

λ = 1.0, spiky 
λ = 0.2, smooth 
λ = 0.01, smooth 

Fig. 4. An example of the annotation vectors obtained with
the modified penalty term (1 spiky+2 smooth shown).

The results of using different 2D attentive combinations are
shown in Table 2 above1. Even though the HORNN system has far
fewer parameters than the TDNN, they provide similar performance
on the dev set where optimised system-specific threshold values
were used. Table 2 shows that all combinations achieve improve-
ments on the dev set where the clustering threshold is optimised. The
performance on the eval set is rather more variable, but both types of
consecutive combination show their superiority over the individual
d-vector systems. In particular, the second method of consecutive
model combination achieves a consistent relative reduction in SER
of 9% and 12% on dev and eval set respectively, and 10% over-
all relative reduction, which provides the best performance. This
represents a 46% reduction in SER over the DiarTK baseline.

6. CONCLUSIONS

In this paper, a novel embedding extraction approach for diarisation
using a 2D self-attentive structure has been proposed. Both simul-
taneous combination and consecutive combination approaches were
analysed. Furthermore, a modified penalty term was also introduced
which provided more diversity to the multi-head weight vector in the
self-attentive layer. Taking the TDNN and HORNN as an example
of two complementary systems, the proposed models were evaluated
using the AMI corpus. Experimental results showed a relative reduc-
tion in diarisation speaker error rate of 21% for a HORNN model and
6% for a TDNN model by including the modification to the penalty
term. Furthermore, a further reduction in SER of 10% was obtained
using the 2D consecutive combination method.

1The models were also tested on the full dev and eval sets. Improvements
were found using the 2D attentive combinations and FC layer combination.
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