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ABSTRACT

Recently, deep neural networks that map utterances to fixed-
dimensional embeddings have emerged as the state-of-the-art in
speaker recognition. Our prior work introduced x-vectors, an em-
bedding that is very effective for both speaker recognition and
diarization. This paper combines our previous work and applies it
to the problem of speaker recognition on multi-speaker conversa-
tions. We measure performance on Speakers in the Wild and report
what we believe are the best published error rates on this dataset.
Moreover, we find that diarization substantially reduces error rate
when there are multiple speakers, while maintaining excellent per-
formance on single-speaker recordings. Finally, we introduce an
easily implemented method to remove the domain-sensitive thresh-
old typically used in the clustering stage of a diarization system.
The proposed method is more robust to domain shifts, and achieves
similar results to those obtained using a well-tuned threshold.

Index Terms— speaker recognition, speaker diarization, deep
neural networks, x-vectors

1. INTRODUCTION

Most research in speaker recognition assumes that there is only
one speaker per recording and the majority of standard evaluation
datasets reflect this assumption. However, speech data collected
from many real-world environments violate this single-speaker as-
sumption, and therefore benefit from speaker diarization as a prepro-
cessing step. Speaker diarization is the process of grouping segments
of speech according to the speaker, and is sometimes referred to as
the “who spoke when” task. Recently, both speaker recognition and
diarization have advanced significantly due to the adoption of deep
neural network (DNN) embeddings to capture speaker character-
istics. These embeddings are now replacing i-vectors, which have
been the state-of-the-art in both tasks for almost ten years. Our work
is based on x-vectors, a type of DNN embedding we developed for
speaker recognition [1]. This paper studies the problem of speaker
recognition for multi-speaker conversations using a modern DNN
embedding-based system.

2. BACKGROUND

2.1. Speaker recognition

Until recently, most state-of-the-art speaker recognition systems
were based on i-vectors [2]. The standard approach uses Gaussian
mixture models (GMMs) and factor analysis to compress multi-
ple sources of variability into a low-dimensional representation,
known as an i-vector. A probabilistic linear discriminant analy-
sis (PLDA) [3] classifier is used to compare i-vectors, and enable
same-or-different speaker decisions [4, 5].

Early work using discriminatively trained neural networks to
capture speaker characteristics focused on extracting frame-level
features to be used as input to Gaussian speaker models [6, 7].
Heigold et al., introduced an end-to-end system, trained on the
phrase “OK Google,” that jointly learns an embedding along with a
similarity metric to compare pairs of embeddings [8]. Snyder et al.,
generalized this framework to text-independent speaker recognition
and inserted a temporal pooling layer into the network to handle
variable-length segments [9]. The work in [1, 10] split the end-to-
end approach into two parts: a DNN to produce embeddings called
x-vectors, and a separately trained classifier to compare them. This
facilitates use of all the accumulated backend technology developed
over the years for i-vectors, such as length-normalization and PLDA
scoring. The x-vector framework is described in Section 3.

2.2. Speaker diarization

Soon after their development for speaker recognition, Shum et al.,
adapted i-vectors to the task of speaker diarization [11, 12]. Mir-
roring progress in speaker recognition, recent systems have replaced
i-vectors with DNN-based embeddings for capturing speaker char-
acteristics [13, 14, 15].

A popular diarization framework involves extracting representa-
tions (i-vectors or DNN embeddings) from short speech segments,
and clustering them, to discover the individual speakers in a record-
ing. Early work used K-means or spectral clustering [11, 12]. Al-
ternatively, a score matrix can be computed between pairs of rep-
resentations using cosine distance [16] or PLDA log-likelihood ra-
tios [17], and clustered using agglomerative hierarchical clustering
(AHC) [18]. Clustering provides a coarse segmentation, which is
often refined at the frame-level, using a process called Variational
Bayes resegmentation [19].

2.3. Multi-speaker conversations

Capturing speaker characteristics in fixed-dimensional embeddings
assumes that the input speech was generated from a single speaker,
and violating this assumption reduces the effectiveness of the rep-
resentation [18, 20]. Interest in the topic of speaker recognition on
multi-speaker conversations has increased with the 2016 Speakers in
the Wild (SITW) challenge [21] and the recent NIST 2018 Speaker
Recognition Evaluation [22] due to the presence of multi-speaker en-
rollment and test recordings. This encourages diarization to be per-
formed in conjunction with speaker recognition. Participants in the
SITW challenge showed that diarization can significantly improve
speaker recognition rates [23, 24]. Our study underscores the value
of diarization for speaker recognition in the multi-speaker environ-
ment.
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Table 1. X-vector DNN architecture
Layer Layer Type Context Size

1 TDNN-ReLU t-2:t+2 512
2 Dense-ReLU t 512
3 TDNN-ReLU t-2, t, t+2 512
4 Dense-ReLU t 512
5 TDNN-ReLU t-3, t, t+3 512
6 Dense-ReLU t 512
7 TDNN-ReLU t-4, t, t+4 512
8 Dense-ReLU t 512
9 Dense-ReLU t 512
10 Dense-ReLU t 1500
11 Pooling (mean+stddev) Full-seq 2x1500
12 Dense(Embedding)-ReLU 512
13 Dense-ReLU 512
14 Dense-Softmax 7185 (# spkrs)

3. X-VECTOR DNN

This section describes the x-vector DNN. The architecture is
based on the DNN embedding system described in [1, 10].
Our software framework has been made available in the Kaldi
toolkit [25]. An example recipe is in the main branch
of Kaldi at https://github.com/kaldi-asr/kaldi/
tree/master/egs/sitw/v2 and several pretrained x-vector
systems can be downloaded from http://kaldi-asr.org/
models.html. We plan on updating the recipe and pretrained
models with the improved system described in this work.

3.1. Architecture

Table 1 summarizes the architecture used in this work. The first 10
layers of the x-vector DNN consists of layers that operate on speech
frames, with a small temporal context centered around the current
frame t. The pooling layer receives the output of layer 10 as input,
aggregates over the input segment, and computes its mean and stan-
dard deviation. These segment-level statistics are concatenated to-
gether and passed through the remaining layers of the network. The
output layer computes posterior probabilities for the training speak-
ers. Compared to the architecture described in [1], we use a slightly
wider temporal context in the TDNN layers, and interleave dense
layers between the TDNN layers. We found that this architecture
greatly outperforms the baseline architecture available in the Kaldi
recipes.

3.2. Features

The features are 30 dimensional MFCCs with a frame-length of 25
ms, mean-normalized over a sliding window of up to 3 seconds. Au-
dio files are sampled at 16 kHz. The Kaldi energy SAD is used to
filter out nonspeech frames.

3.3. Training

The DNN is trained to classify the 7,185 speakers in the training
data using a multi-class cross entropy objective function. A training
example consists of a 2–4 second speech segment (about 3 seconds
average), along with the corresponding speaker label. Following a
study by McLaren et al. in [26], we use much more aggressive data
augmentation than in previous studies (see Section 6.1), train the

DNN for 6 epochs (instead of 3) and use a minibatch size of 128
(instead of 64).

3.4. Embedding extraction

Once the network is trained, x-vectors are extracted from the affine
component of layer 12. The x-vectors are used as features for two
different PLDA backends (one for the diarization system described
in Section 4 and one for the speaker recognition system described in
Section 5).

4. SPEAKER DIARIZATION

The diarization system is based on a system we devel-
oped for the 2018 DIHARD speaker recognition challenge
[14, 27]. A similar recipe (for narrowband telephone speech)
can be found in the main branch of the Kaldi toolkit:
https://github.com/kaldi-asr/kaldi/tree/
master/egs/callhome_diarization/v2. The system
uses x-vectors extracted from the DNN in Section 3 with PLDA, and
agglomerative hierarchical clustering (AHC). The PLDA backend
consists of centering, whitening and length normalization, followed
by scoring. All components of the backend are trained on 3 second
segments extracted from the augmented VoxCeleb data described in
Section 6.1.

For either an enrollment recording or a test recording, x-vectors
are extracted from 1.5 second segments with a 0.75 second overlap.
PLDA scores are computed between all pairs of x-vectors. This is
followed by AHC with average linkage clustering. In our primary
system, the number of clusters is controlled by a stopping threshold
which was tuned on the held-out SITW DEV set. The most similar
clusters are repeatedly merged, until the average PLDA scores be-
tween clusters is less than the threshold. Diarization results in N
clusters (which, ideally correspond to speakers).

4.1. Removing the AHC threshold

AHC-based diarization typically requires a well-chosen cluster stop-
ping threshold to achieve good performance. This threshold is sen-
sitive to the domain of the data, and a poorly chosen threshold will
result in bad performance. This is a particularly concerning possi-
bility when a reliable development set is not available.

To improve robustness, we propose a simple alternative to elim-
inate the need for the AHC threshold. Instead of relying on a tuned
AHC threshold, we begin with an estimate of the maximum number
of speakers K that might appear in the recordings. We assume that
there are never more than K speakers in an utterance, and perform
clustering K times, with exactly k ∈ {1, 2, . . . ,K} clusters each
time we perform clustering. Taking the union of each of the individ-
ual diarizations results in a set of N = K(K+1)

2
ways to partition

a recording that has at most K speakers. The N potential speak-
ers are then treated exactly the same as the speakers discovered by
clustering with an AHC threshold, as described in Section 5.

Looking at the SITW DEV set, we found that the performance
isn’t very sensitive to different values of K ≥ 3. We use K = 5 for
the experiments in the results section.

4.2. Diarizing enrollment recordings

If we are processing an enrollment recording, then the goal is to use
an assist segment to identify any other speech in the recording which
belongs to the speaker we wish to enroll, while removing any speech
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belonging to other speakers. As described in Section 6.2, an assist
segment is about 5 seconds of speech in a longer recording, which is
known to contain the speaker we wish to enroll.

The speech corresponding to the assist segment is treated as an
“auxiliary enrollment” and the entire recording is treated as an “aux-
iliary test” recording. After clustering, we obtain N speakers in the
auxiliary test. We then perform the procedure described in Section 5,
which involves computing PLDA scores between the auxiliary en-
rollment and each of the N speakers discovered in the auxiliary test.
All the speech segments belonging to the speaker in the auxiliary
test that maximizes the PLDA score (as in Equation 1) are identified,
and used by the speaker recognition system to extract an enrollment
x-vector.

4.3. Diarizing test recordings

Handling the test recordings is straightforward once AHC is per-
formed. The speech segments are grouped according to the N speak-
ers discovered in the conversation, and are passed directly to the
speaker recognition system, where they are used to perform recog-
nition as described in the next section.

5. SPEAKER RECOGNITION

Recognition is performed using x-vectors extracted from the DNN in
Section 3 and a PLDA backend. The x-vectors are centered, dimen-
sionality reduced to 225 using LDA, and are length-normalized. All
parameters in the backend are estimated on the augmented VoxCeleb
data, as described in Section 6.1.

If diarization was performed on a test recording, then, instead of
extracting a single x-vector for the entire test recording, we extract N
x-vectors, one for each of the N speakers identified in the recording.
Suppose R(, ) is the PLDA log-likelihood ratio score, u is the x-
vector for the enrolled speaker and v1,v2, . . . ,vN are the x-vectors
for each of the N speakers in the test recording. To perform speaker
recognition, we compute the PLDA score as in Equation 1, which is
the maximum of the PLDA scores between the enrollment x-vector
and all N test x-vectors.

R(enroll, test) = max{R(u,v1), . . . , R(u,vN )} (1)

Handling a diarized enrollment recording is simpler, since there
can only be one speaker of interest at a time. We simply extract the
enrollment x-vector from all speech frames identified as belonging
to the speaker of interest (as described in Section 4.2), and ignore
the remaining frames.

6. EXPERIMENTAL SETUP

6.1. Training data

The system is trained on a large subset of the combined VoxCeleb 1
[28] and VoxCeleb 2 [29] corpora sampled at 16 kHz. The test por-
tion of VoxCeleb 2 as well as 60 speakers from VoxCeleb 1 over-
lap with the evaluation dataset, and so we removed them before
training. See http://www.openslr.org/resources/49/
voxceleb1_sitw_overlap.txt for a list of speakers from
VoxCeleb 1 which are known to overlap with SITW. This leaves a
total of over 150,000 recordings from 7,185 speakers. Using the tar-
get speaker marks provided in the corpora, the recordings are split
into over 1.2 million segments.

We apply a data augmentation strategy based on [1] that consists
of adding noises, music, babble, and reverberation. The x-vector

DNN was trained on 7.2 million segments, comprised of the 1.2
million “raw” segments extracted directly from VoxCeleb, plus an
additional 6 million segments obtained by data augmentation. The
PLDA backend for speaker recognition (Section 5) was trained on
the full-length recordings of VoxCeleb, but we only keep the speech
belonging to the speakers of interest (as provided by the segments
that are distributed with the corpora). We apply augmentation to
double the amount of training data, which increases the number of
recordings from about 150,000 to 300,000. Finally, the diarization
backend (Section 4) was trained on 256,000 three second segments
extracted randomly from the full-length augmented recordings.

6.2. Speakers in the Wild

We perform experiments on the Speakers in the Wild (SITW) dataset
developed by SRI International [21]. The dataset consists of chal-
lenging audio collected from diverse conditions in the video audio
domain. One of the challenges is the presence of multiple speakers
in some of the utterances. The recordings vary in length, from 6 to
240 seconds.

The dataset is divided into a development set DEV (which we
use only for tuning) and an evaluation set EVAL. The EVAL set con-
tains 180 speakers divided into 4,170 models and a total of 2,883
audio files.

Enrollment conditions
• CORE: Enrollment recordings contain exactly one speaker.
• ASSIST: One or more speakers in enroll, along with an “as-

sist” mark, which is a short segment (typically 5 seconds) of
the recording that is known to contain the speaker of interest.

Test conditions
• CORE: Test recordings contain exactly one speaker.
• MULTI: One or more speakers in the test recordings.

7. EXPERIMENTAL RESULTS

In Table 2 we report results on the EVAL portion of the Speakers in
the Wild (SITW) dataset. The four evaluation conditions are formed
by pairing an enrollment condition with a test condition described in
Section 6.2. Performance on these conditions is examined in Sec-
tions 7.1–7.4. The results are further broken down by whether or
not the enroll or test recordings are diarized. The diarization system
and its interaction with speaker recognition is the subject of Sections
4–5. We report results in terms of equal error rate (EER) and the
minimum of the normalized detection cost function (DCF). DCF1
uses PTarget=10−2 and DCF2 uses PTarget=10−3.

The Threshold system uses an AHC threshold tuned on the DEV
set to control the number of speakers, whereas No threshold uses the
alternative method described in Section 4.1 to eliminate the thresh-
old. In Section 7.5, we discuss performance using the proposed al-
ternative system that eliminates the AHC threshold.

7.1. CORE-CORE

In the simplest SITW evaluation condition, there is exactly one
speaker present in both the test and enrollment recordings. In the
first row of results in Table 2 (NO DIAR), we do not apply any
diarization and achieve very low error rates. In the next row of
results (TEST), we apply diarization to the test recordings. Using
the standard approach, diarizing single-speaker recordings degrades
performance by a very small amount–less than half a percent relative
on all performance metrics.
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Table 2. Results on the SITW evaluation set.
EVAL CORE-CORE EVAL CORE-MULTI EVAL ASSIST-CORE EVAL ASSIST-MULTI

Diarization EER DCF1 DCF2 EER DCF1 DCF2 EER DCF1 DCF2 EER DCF1 DCF2
NO DIAR 1.7 0.20 0.34 3.5 0.28 0.44 3.2 0.24 0.38 4.3 0.28 0.43

Threshold
ENROLL 1.6 0.20 0.35 3.0 0.26 0.41

TEST 1.8 0.21 0.35 2.1 0.22 0.41 3.3 0.24 0.39 3.8 0.26 0.41
BOTH 1.7 0.21 0.36 2.1 0.21 0.37

No threshold
ENROLL 1.6 0.20 0.36 3.0 0.26 0.42

TEST 1.8 0.23 0.36 2.0 0.22 0.40 3.8 0.26 0.40 3.9 0.26 0.41
BOTH 2.2 0.23 0.38 2.2 0.22 0.38

CORE-CORE is the most commonly used condition from SITW.
Our best performance on this condition is EER=1.7% DCF1=0.20,
which comfortably outperforms the best previously reported num-
bers in [30], which are EER=2.7% and DCF1=0.33. The x-vector
DNN architecture in this paper is similar to that of the previous work,
so the improvements are mostly due to a better training recipe, which
consists of more aggressive data augmentation than previously used,
and the addition of a substantial amount of in-domain data from the
VoxCeleb 2 Corpus [29].

7.2. CORE-MULTI

CORE-MULTI extends the previous condition with test recordings
that contain one or more speakers. We still use single-speaker en-
rollment recordings in this condition.

Diarizing the multi-speaker test conversations (TEST) results in
a clear improvement over performing no diarization (NO DIAR).
Using a tuned AHC threshold, diarization reduces EER by 38%, and
by 20% in DCF1 and 8% in DCF2. The results that eliminate the
AHC threshold are even slightly better. Note that we do not consider
the effect of diarizing the enrollment recordings yet, as we do not
consider that meaningful unless the assist segments are provided.

7.3. ASSIST-CORE

This condition introduces our systems to the assist segments. These
segments provide a few seconds of speech of the speaker we wish
to enroll. As described in Section 4.2, we use the assist marks to
discover additional speech (in the enrollment recording) that belongs
to the speaker of interest, while discarding any speech from other
speakers. Although the enrollment recordings may have multiple
speakers, the test recordings are single-speaker in this condition.

Diarizing the enrollment recordings (ENROLL) reduces EER
by 50% relative to NO DIAR. The DCF numbers also improve, but
by a smaller amount. As expected, unnecessarily diarizing the test
recordings (but not enrollment) results in the worst performance.
Nonetheless, the Threshold results are not significantly worse than
the results without diarization. In the last row (BOTH), we diarize
both the enrollment and the test recordings. For the Threshold sys-
tem, this degrades performance by 2–8% relative to the ENROLL
results, but still maintains an improvement over NO DIAR.

7.4. ASSIST-MULTI

This condition combines the challenge of potential multi-speaker en-
rollment recordings with multi-speaker test recordings. As in the
previous section, diarizing the enrollment recordings is enabled by
the assist segments.

Diarizing either enroll or test recordings individually (but not
together) results in moderate improvements in EER, and smaller im-
provements in DCF1 and DCF2. Fortunately, the benefit of com-
bining enroll and test diarization results in much more dramatic im-
provements. Looking at the Threshold system, we observe a 50%
EER reduction over no diarization and a 14–23% reduction in DCF.

7.5. Removing the threshold

The previous sections showed that the Threshold system achieves
excellent results. It relies on an AHC threshold tuned on labeled
in-domain data. Although this is not an obstacle for this paper, as
we are able to tune on the well-matched DEV set, it cannot be as-
sumed that an in-domain development set is always available. The
No threshold system uses the method described in Section 4.1 to ad-
dress the problem of performing diarizing when no development set
is available to tune on.

In Table 2 we see that, under most conditions, the alternative No
threshold system performs similarly to Threshold. When diarizing
is required for multi-speaker conversations, the results of this sys-
tem are very similar to the standard approach. The system performs
worst on ASSIST-CORE when we needlessly diarize the test record-
ings. However, the BOTH results are nonetheless better than the
results without diarization.

8. CONCLUSIONS

This paper investigated speaker recognition with multi-speaker
recordings. We used a diarization system based on x-vectors, PLDA,
and agglomerative hierarchical clustering (AHC) as a front-end for
a speaker recognition system. We evaluated performance on the
Speakers in the Wild dataset, and found that diarization signifi-
cantly improved speaker recognition performance on multi-speaker
conversations, and retained strong performance on single-speaker
recordings as well. Finally, we showed that the AHC threshold,
which controls the number of clusters, can be replaced with an
alternative method that achieves similar performance under most
conditions, but eliminates the need for a in-domain development set
for tuning.
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