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ABSTRACT

The NIST Speaker Recognition Evaluation (SRE) 2018 challenge
comprises an open evaluation of the text independent speaker veri-
fication task. This paper summarizes the LEAP speaker verification
systems submitted to the NIST SRE 2018. For all the speaker verifi-
cation approaches, the front-end feature extraction involved the use
of neural embeddings from a time delay neural network (TDNN)
trained on a speaker discrimination task. These features, called x-
vectors, are used in multiple ways for speaker verification task. In
the first approach, the x-vectors with pre-processing and dimension-
ality reduction, are used with probabilistic linear discriminant analy-
sis (PLDA) scoring. The second approach applies a speaker diariza-
tion scheme on the test segments containing multiple talkers before
speaker verification scoring based on PLDA. The third system uses
a local pairwise LDA model for pre-processing the x-vectors which
are then scored using a Gaussian back-end. With experiments on
the SRE 2018 database, we show that most of the systems achieved
noticeable improvements over the NIST baseline in terms of the pri-
mary cost metric. Using a system fusion of the various approaches,
we obtain significant improvements over the NIST official baseline
(average relative improvements of 19.7% and 20.1% for the devel-
opment and evaluation set respectively).

Index Terms— x-vectors, Speaker Diarization, PLDA scoring,
Gaussian back-end, Dimensionality Reduction, Speaker Verifica-
tion.

1. INTRODUCTION

The recent years have seen increasing demand for speaker based au-
thentication and verification systems. In commercial and defense
applications where the speaker verification system forms the first
level of interface, the acceptable performance of the system relies
on relatively clean recordings and with matched languages used in
training and testing the systems. The performance is substantially
degraded in noisy and multi-lingual environments making the down-
stream applications vulnerable. The NIST biannual speaker recogni-
tion evaluation (SRE) challenges provide benchmark for comparing
and standardizing speaker recognition systems. The SRE 2018 chal-
lenge is the latest among the ongoing series of speaker recognition
evaluations conducted. The development and evaluation data con-
tains recordings from Call My Net 2 (CMN2) data which consists
of multi-speaker data from Tagalog and Cantonese languages and

This work was funded partly by grants from the Department of Science
and Technology Extra Mural Research Grant (EMR/2016/007934).

the Video Annotation for Speech Technology (VAST) data contain-
ing noisy speech recordings extracted from YouTube videos. CMN2
recordings are derived from conversational telephone speech record-
ing from various devices and Voice Over IP (VOIP) while the VAST
corpora is derived from far field, multi-speaker and noisy conditions.

The traditional approach to speaker recognition used the Gaus-
sian mixture modeling (GMM) from the training data followed by an
adaptation using maximum-aposteriori (MAP) rule [1]. The adapted
model is compared with the background GMM model using the log-
likelihood ratio based scoring. The development of i-vectors as fixed
dimensional front-end features for speaker recognition tasks was in-
troduced in [2, 3]. The i-vectors capture long term information of
the speech signal such as speaker and language. In the recent past,
the i-vectors derived from deep neural network (DNN) based poste-
rior features were attempted for SID [4]. The use of bottleneck fea-
tures for front-end feature extraction derived from a speech recogni-
tion acoustic model has also shown good improvements for speaker
recognition [5, 6].

Recently, neural network embeddings trained on a speaker
discrimination task were also derived as features to replace the
i-vectors. These features called x-vectors [7] were shown to per-
form better than the i-vectors for speaker recognition. Following
the extraction of x-vectors/i-vectors, different speaker verification
systems make use of discriminative/ generative models in the back-
end for computing the scores. The most popular approaches for
scoring include support vector machines (SVMs) [8], Gaussian
back-end model [9, 10] and the probabilistic linear discriminant
analysis (PLDA) [11]. Some efforts on pairwise generative and
discriminative modeling are discussed in [12–14].

In this paper, we describe our efforts for the SRE 2018 challenge
which comprised of three broad approaches. In the first approach,
we use the x-vector based features with a PLDA scoring system. We
process the x-vectors with various normalization and dimensional-
ity reduction techniques such as within class covariance normaliza-
tion (WCCN) [15], length normalization [16] and linear discrimi-
nant analysis (LDA) [17]. In the second approach, we leverage an
i-vector based speaker diarization system by diarizing the test files
(that contain multiple talkers), and scoring each of the speaker seg-
ments with the enrolment speaker utterances in a PLDA model. The
final score for system submission is the maximum of all the speaker
segment scores. The diarization approach is motivated by the fact
that a target test recording will usually be missed when it consists of
multiple speakers. Assuming the diarization to be correct, if one of
the diarized segments corresponds to the target speaker, it will result
in a high detection likelihood ratio and the target trial will not be
missed. In the third approach, local pairwise LDA [18] attempts to
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model pairs of x-vectors rather than single i-vectors/x-vectors done
in traditional systems. In the third approach, by sampling pairs of
x-vectors from the training datasets, we would have access to a very
large number of trials for both the target and non-target cases. We
show that using a simple two class Gaussian back-end model [14]
over pairs of x-vectors can achieve significant improvements over
the baseline which uses Gaussian PLDA on length normalized x-
vectors.

The rest of the paper is organized as follows: In Section 2, we
give an overview of the x-vector feature extraction. Section 3 de-
tails the individual systems developed for SRE 2018 highlighting the
novel approaches proposed for speaker verification. In Section 4, we
provide a description of the system submissions for SRE. This is fol-
lowed by Section 5 where we report the SRE results. A summary of
the paper is provided in Section 6.

2. X-VECTOR MODEL

The x-vector model [7,19] is developed using the Kaldi toolkit [20].
The model consists of a time-delay neural network (TDNN) with
utterance level statistics pooling followed by a fully connected neu-
ral network that maps to speaker targets. The TDNN model is
trained using conversational telephone and microphone speech data
extracted from the NIST 2004-2010 SRE datasets, as well as from
MIXER 6, Switchboard Cellular (SWBCELL) Parts I and II, and
Switchboard (SWB) Phases I, II, and III corpora. We use a 3-fold
data augmentation strategy that adds two noisy versions of the orig-
inal recordings to the training data [7]. The recordings are corrupted
by either digitally adding noise (i.e., babble, general noise, music)
or by a convolution with simulated room impulse responses 1. The
front-end features for the TDNN training consists of 23-dimensional
mel frequency cepstral coefficients from 25 ms frames which are
shifted every 10 ms using a 23-channel mel-scale filter bank span-
ning the frequency range 20 Hz - 3700 Hz. Before dropping the
non-speech frames using an energy based SAD, a short-time cep-
stral mean subtraction is applied over a 3-second sliding window.
The TDNN model has 3 layers of time delay neural network layers,
two fully connected layers, a statistical pooling layer that computes
the mean and standard deviation at utterance level, and 2 fully
connected layers. All the layers use a rectified linear unit (ReLU)
non-linearity and the model is trained to discriminate among the
nearly 7000 speakers in the training set with 219, 238 speech seg-
ments. The first 5 hidden layers operate at frame-level, while the last
2 operate at segment-level. After training, the x-vector embeddings
are extracted from the 512-dimensional affine component of the 6th

layer (i.e., the first segment-level layer).

3. INDIVIDUAL SYSTEMS

The block schematics of the individual systems developed for SRE
2018 challenge is shown in Figure 1. Five individual systems A-E
were considered for submission. System A is the x-vector PLDA
baseline system with some minor changes. System B and C are x-
vector PLDA systems which make use of an i-vector based diariza-
tion system. Systems D and E are Gaussian back-end systems. The
detailed description of each of the systems is given below.

1Room response functions obtained from http://www.openslr.org
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Fig. 1. Block schematic of the x-vector pre-processing pipeline and
the individual system components used for SRE2018 evaluation.

3.1. System A - x-vector PLDA

The x-vectors extracted from the TDNN model are centered, unit-
length normalized [16], whitened, and dimensionality reduced to
150 dimensions using LDA [17]. A Gaussian PLDA model with a
full-rank eigenvoice subspace is trained using the x-vectors extracted
from 127, 233 speech segments derived from the SRE and MIXER 6
datasets after discarding very short duration segments (less than 5 s).
The PLDA model is adapted using the unlabelled recordings of the
SRE 2018 development set. We found that the adaptation only ben-
efited the CMN2 dataset [21] while the adaptation did not improve
the VAST dataset. Hence, we use the adapted PLDA models only
for the CMN2 scoring. The scores are then calibrated as described
later in Section 4.

3.2. System B - Diarization based x-vector PLDA scoring

The diarization system [22] involves segmenting the test recordings
into different speaker segments and then scoring the same speaker
regions with the enrolment files. The following steps are involved in
this system:

3.2.1. Diarization Model Training

The training datasets used are the NIST 2004-2010 SRE datasets
(without augmentation), Switchboard Cellular(SWBCELL) Parts I
and II, and Switchboard (SWB) Phases I, II, and III corpora. The
23 dimensional MFCC features are extracted at a window size of 25
ms and a 10 ms shift same as in System A. A Gaussian Mixture Uni-
versal Background Model (GMM-UBM) of 2048 mixtures is trained
and adapted using SRE 2018 unlabeled development dataset. This is
further used to estimate a 64 dimensional total variability matrix for
i-vector extraction. Then, i-vectors are extracted from the training
dataset to build a PLDA model. This PLDA model is also adapted
using the SRE 2018 unlabeled development set.
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3.2.2. SRE Scoring

For the given test recording, the 64 dimensional i-vectors are ob-
tained at every 1.5 s with a 0.75 s shift. The i-vectors are obtained
from the segments defined as speech after applying VAD. Then, the
PLDA scores are computed for every pair of i-vectors from the given
recording. This generates a matrix containing the similarity score of
each i-vector with every other i-vector. An agglomerative hierarchi-
cal clustering (AHC) technique is used to identify speaker clusters
from the PLDA scores [22]. During this clustering process, similar
i-vectors are merged into a single cluster. The enrolment part of the
SRE 2018 development data have been used to find the threshold
used to stop the AHC procedure. The enrolment files from CMN2
source have only one speaker and files from VAST are provided
with hand labeled diarization segments. For these files/segments, the
AHC is done till all segments are clustered as one speaker. The low-
est threshold τmin needed for each enrolment file so as to cluster all
frames as one speaker is computed. The threshold for diarizing the
SRE18 test recordings is determined as the mode of the thresholds
τmin of all enrolment files.

The PLDA model trained for System A is used for this system
as well. The x-vectors are extracted for enrolment recordings (as in
System-A) and for each of the diarized test segments. This is illus-
trated in Fig 1. Each of the diarized test segment is scored with the
corresponding enrolment model, and the maximum score among the
diarized segments for a given trial is considered to be the final score.
As the diarization errors adversely impact the SRE performance on
the development data, we find that the performance of the diariza-
tion based SRE systems to be marginally worse than the baseline,
but complementary nonetheless.

3.3. System C - Diarization based x-vector PLDA scoring using
adapted PLDA model

This is exactly the same as System B, except that the PLDA model
used in SRE scoring is adapted [21] using the unlabeled development
data. We find in our experiments that the adaptation provides good
improvements to the diarization based SRE system.

3.4. System D - Gaussian back-end with LDA transformed
paired x-vectors

The x-vectors are extracted using the same model as System A.
From a total of 127, 233 speech segments from the training datasets,
62, 290 pairs of x-vectors are randomly sampled, with the constraint
that each pair is derived from the same speaker. Then, another
63, 901 pairs of segments are randomly sampled such that each
pair is derived from different speakers. The x-vectors are processed
with various normalization and dimensionality reduction techniques.
These processed x-vectors of dimension R are concatenated into a
single vector of dimension 2R. A prior work in [14] had previously
looked at pairwise generative modeling for speaker verification.

In our work, the same-speaker pairs represent target trials and
different-speaker pairs represent non-target trials in the evaluation
set. The paired x-vectors from same speaker pairs are modeled us-
ing a Gaussian distribution with parameters (µt,Σt) and different
speaker pairs are modeled by a Gaussian distribution with param-
eters (µnt,Σnt). The log-likelihood ratio (LLR) for a trial pair
x = [x

ᵀ

enrol x
ᵀ

test]
ᵀ

is then obtained as:

LLR = −(x− µt)
ᵀ

Σ
−1

t (x− µt) + (x− µnt)
ᵀ

Σ
−1

nt (x− µnt)

For System D, the Gaussian PLDA model with a speaker factor
of 100 dimensions is trained on the training dataset and the MAP
estimates of the speaker factors (eigenvoice factors) are obtained
for the CMN2 segments. These 100 dimensional speaker factors
are used to compute the CMN2 Gaussian back-end scores. For the
VAST test set, the 150 dimensional LDA x-vectors are used directly.
The Gaussian means are also adapted using the labeled SRE devel-
opment dataset as follows:

µt(adapt) = (1 − λ)µt + λµdev

µnt(adapt) = (1 − λ)µnt + λµdev

where µdev = [µ
ᵀ

enrol µ
ᵀ

test]
ᵀ

is the paired mean vector of the en-
rolment and test x-vectors of the SRE 2018 development set. We
have used an adaptation factor of λ = 0.2 for the SRE2018 evalua-
tion.

It is worth noting that the sampling of non-target and target pairs
is done in such a way that no speech segment is repeated. That is, out
of nC2 pairs of segments, we choose approximately n/2 pairs. This
procedure takes only a few seconds and also models the speakers
reasonably well.

3.5. System E - Gaussian back-end with LP-LDA transformed
paired x-vectors

This system is similar to System D except for the pre-processing
of the paired x-vectors. In this case, the 512 dimensional x-vectors
are centered, unit length normalized, whitened and reduced to 150
dimensions via Linear Pairwise Linear Discriminant Analysis (LP-
LDA) [18]. A Gaussian PLDA model with a speaker factor of 100
dimensions is trained, and the MAP estimates of the speaker factors
are obtained for CMN2 segments. A Gaussian PLDA model with a
speaker factor of 50 dimensions is trained and the MAP estimates of
the speaker factors are obtained for the VAST datasets. This is fol-
lowed by the Gaussian back-end modeling and scoring as described
for System D. However, the Gaussian mean adaptation is not per-
formed for System E.

4. SYSTEMS SUBMITTED FOR SRE 2018 CHALLENGE

4.1. Score Calibration and Fusion

A linear score fusion of the different systems is done using the FoCal
two class toolkit [24] where the weights and biases are obtained with
a logistic regression objective. Furthermore, we calibrate the scores
of the final systems using an affine transform which normalizes the
within class score variance. The scores are then mean shifted such
that the threshold corresponding to the minimum cost is the point
where the actual cost is computed (the operating point for actual cost
is given in NIST SRE 2018 evaluation plan 2). This was performed
so as to minimize the difference between Cmin and Cprimary cost
metrics used for SRE scoring. All the systems are analyzed using
the equal error rate (EER), minimum detection cost (Cmin) and the
primary detection cost (Cprimary) as defined in the evaluation plan.

4.2. Primary system

The primary system used a system combination of all the five indi-
vidual system (System A-E). The FoCal toolkit [24] is used to get the
final scores for the primary system which are then calibrated before
cost metric computation.

2nist.gov/sites/default/files/documents/2018/08/17/sre18 eval
plan 2018− 05− 31 v6.pdf
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Table 1. Results for individual systems on the SRE 2018 development and evaluation set measured using EER (%), Cprimary and Cmin.
The refernce for comparison is the official NIST baseline systems developed using i-vectors and x-vectors [23].

Systems Dataset Dev Eval

EER (%) Cprimary Cmin EER (%) Cprimary Cmin

NIST CMN2 12.66 0.737 0.663 13.66 0.808 0.773
i-vector baseline VAST 9.05 0.778 0.630 17.14 0.831 0.732

NIST CMN2 10.62 0.719 0.651 11.38 0.776 0.741
x-vector baseline VAST 7.41 0.704 0.572 14.22 0.837 0.721

System A CMN2 9.15 0.601 0.587 10.56 0.631 0.618
VAST 7.41 0.646 0.646 16.41 0.701 0.672

System B CMN2 11.08 0.682 0.668 12.28 0.711 0.704
VAST 7.41 0.646 0.646 15.90 0.726 0.687

System C CMN2 9.60 0.603 0.588 11.43 0.638 0.629
VAST 8.64 0.630 0.630 14.29 0.710 0.603

System D CMN2 9.41 0.689 0.683 10.53 0.746 0.733
VAST 7.41 0.498 0.498 14.60 0.742 0.688

System E CMN2 11.25 0.771 0.749 12.13 0.838 0.829
VAST 3.70 0.576 0.576 13.02 0.729 0.704

Table 2. Results for various fused systems submitted to the SRE 2018 on the development and evaluation set.

Systems Dataset Dev Eval

EER (%) Cprimary Cmin EER (%) Cprimary Cmin

Primary System CMN2 7.97 0.58 0.56 9.34 0.61 0.61
VAST 4.12 0.56 0.56 14.64 0.68 0.64

Contrastive System CMN2 9.41 0.69 0.68 10.53 0.75 0.73
VAST 3.70 0.58 0.58 13.02 0.73 0.70

4.3. Contrastive System

This system is based only on single system. The CMN2 test seg-
ments are scored using System D and the VAST segments are scored
using System E. This corresponds to the best single in terms of EER
on the development data.

5. RESULTS

The results for the individual systems used in SRE evaluation are
provided in Table 1. The baseline system results provided by NIST
[23] are also provided in the top of the table for reference. As seen
here, most of the systems improve over the baseline system results.
The best performance of the individual systems on the development
and evaluation system for CMN2 dataset is achieved for System A
(average relative improvements of 16.4% and 18.7% over the NIST
baseline for the development and evaluation dataset respectively).
For the VAST dataset in the SRE 2018 development, the Gaussian
back-end based systems (System D and System E) improve over the
PLDA based systems (Systems A,B,C). For evaluation part of SRE
2018, the diarization based System C provides the best performance
in terms of Cmin. The average relative improvement in terms of
Cprimary for System-D over the NIST baseline is about 16.7% and
7.7% on the development and evaluation set respectively.

Table 2 summarizes the performances of the submitted systems

that are based on system fusion. The primary system improves over
the best individual systems (contrastive system) for the development
and evaluation setup.The average relative improvements in terms of
Cprimary for the primary system over the NIST baseline are about
20.1 % and 19.7 % respectively for the development and evaluation
set. It is also worth noting the improvements observed for most of
the systems in the open development set are also consistent when
tested using the blind evaluation dataset.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented the detailed description of the
LEAP submission to SRE 2018 evaluation. The systems developed
for the challenge consisted of novel components like diarization
for speaker verification, Gaussian back-end modeling and pairwise
linear discriminant analysis. In particular, the Gaussian back-end
outperformed the conventional PLDA modeling for the noisy VAST
dataset recordings. It is important to note that the Gaussian Back-
end performs better than PLDA though we do not explicitly model
the speaker and channel variability like in PLDA. The individual
systems developed for the NIST SRE task improved over the NIST
baseline. The combined system provided considerable advancement
in terms of SRE performance over the baseline system.
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